So far, since you moved into the apartment until the end of this much of the story, you haven't done ANY work on the dresser yet.
I'll admit that you pushed, groaned and grunted, sweated and strained plenty. You're physically and mentally exhausted, you're not interested in the dresser at the moment, and right now you just want to snappa cappa brew, crash on the couch, and watch cartoons on TV. But if you've done your Physics homework, you know you haven't technically done any <u><em>work</em></u> yet.
In Physics, "Work" is the product of Force times Distance.
Since the dresser hasn't budged yet, the Distahce is zero. So no matter how great the Force may be, it's multiplied by zero, so the <em>Work is zero</em>.
Answer:
The air fraction to be removed is 0.11
Given:
Initial temperature, T =
= 283 K
Pressure, P = 250 kPa
Finally its temperature increases, T' =
= 318 K
Solution:
Using the ideal gas equation:
PV = mRT
where
P = Pressure
V = Volume
m = no. of moles of gas
R = Rydberg's Constant
T = Temperature
Now,
Considering the eqn at constant volume and pressure, we get:
mT = m'T'
Thus
(1)
Now, the fraction of the air to be removed for the maintenance of pressure at 250 kPa:

From eqn (1):


Answer:42.43m/s
Explanation:According to vf=vi+at, we can calculate it since v0 equals to 0. vf=0+9.8m/s^2*4.33s= 42.434m/s
Answer:
E = 1.04*10⁻¹ N/C
Explanation:
Assuming no other forces acting on the proton than the electric field, as this is uniform, we can calculate the acceleration of the proton, with the following kinematic equation:

As the proton is coming at rest after travelling 0.200 m to the right, vf = 0, and x = 0.200 m.
Replacing this values in the equation above, we can solve for a, as follows:

According to Newton´s 2nd Law, and applying the definition of an electric field, we can say the following:
F = mp*a = q*E
For a proton, we have the following values:
mp = 1.67*10⁻²⁷ kg
q = e = 1.6*10⁻¹⁹ C
So, we can solve for E (in magnitude) , as follows:

⇒ E = 1.04*10⁻¹ N/C