I'll be happy to solve the problem using the information that
you gave in the question, but I have to tell you that this wave
is not infrared light.
If it was a wave of infrared, then its speed would be close
to 300,000,000 m/s, not 6 m/s, and its wavelength would be
less than 0.001 meter, not 12 meters.
For the wave you described . . .
Frequency = (speed) / (wavelength)
= (6 m/s) / (12 m)
= 0.5 / sec
= 0.5 Hz .
(If it were an infrared wave, then its frequency would be
greater than 300,000,000,000 Hz.)
It will travel slowest through gases.
Weight of the child m = 50 kg
Radius of the merry -go-around r = 1.50 m
Angular speed w = 3.00 rad/s
(a)Child's centripetal acceleration will be a = w^2 x r = 3^2 x 1.50 => a = 9 x
1.5
Centripetal Acceleration a = 13.5m/sec^2
(b)The minimum force between her feet and the floor in circular path
Circular Path length C = 2 x 3.14 x 1.50 => c = 3 x 3.14 => C = 9.424
Time taken t = 2 x 3.14 / w => t = 6.28 / 3 => t = 2.09
Calculating velocity v = distance / time = 9.424 / 2.09 m/s => v = 4.5 m/s
Calculating force, from equation F x r = mv^2 => F = mv^2 / r => 50 x (4.5)^2
/ 1.5
F = 50 x 3 x 4.5 => F = 150 x 4.5 => F = 675 N
(c)Minimum coefficient of static friction u
F = u x m x g => u = F / m x g => u = 675/ 50 x 9.81 => 1.376
u = 1.376
Hence with the force and the friction coefficient she is likely to stay on merry-go-around.
Answer:
Interference
Explanation:
When two waves of same frequency and constant phase difference super impose at a point on the screen then due to their superposition we will get different intensity of light at different positions of the screen
This phenomenon of redistribution of energy is known as interference of light.
So at the position of screen where the light intensity is maximum on the screen is known as constructive interference while the positions on the screen where it will get minimum intensity on the screen is known as destructive interference of the light
So correct answer would be
Interference