<span>Nuclear energy can be used to power all of
the above choices. Nuclear power plants produce radioactive waste that must be
stored properly. It is very impossible for a nuclear power plant to have no
waste at all since lots of chemicals are used to create the process as it gives
energy to other machines, weapons such as bombs and powering submarines. Radioactive waste can not be released into
local water supplies since the wastes are very radioactive and may cause
mutation to the fishes and bioaccumulation which will affect humans as well. It
will also cause air pollution if the chemicals are not stored properly.</span>
Answer:
M' = μ₀n₁n₂πr₂²
Explanation:
Since r₂ < r₁ the mutual inductance M = N₂Ф₂₁/i₁ where N₂ = number of turns of solenoid 2 = n₂l where n₂ = number of turns per unit length of solenoid 2 and l = length of solenoid, Ф₂₁ = flux in solenoid 2 due to magnetic field in solenoid 1 = B₁A₂ where B₁ = magnetic field due to solenoid 1 = μ₀n₁i₁ where μ₀ = permeability of free space, n₁ = number of turns per unit length of solenoid 1 and i₁ = current in solenoid 1. A₂ = area of solenoid 2 = πr₂² where r₂ = radius of solenoid 2.
So, M = N₂Ф₂₁/i₁
substituting the values of the variables into the equation, we have
M = N₂Ф₂₁/i₁
M = N₂B₁A₂/i₁
M = n₂lμ₀n₁i₁πr₂²/i₁
M = lμ₀n₁n₂πr₂²
So, the mutual inductance per unit length is M' = M/l = μ₀n₁n₂πr₂²
M' = μ₀n₁n₂πr₂²
Question: What is the frequency of a wave that has a wave speed of 120 m/s and a wavelength of 0.40 m?
Answer: The equation that relates frequency of a wave to a waves speed and wavelength is Speed of Wave= Frequency X Wavelength. Since you are given speed and wavelength, you plug those two known numbers into the equation, 120= Frequency X 0.40. You then divide 120 by .4 to get your frequency of 300.
Explanation: this might help for
An organism scientific name consist of : C. its genus name and its species name
The first part of the name is taken from the Genus and the second part of the name is taken from the species
hope this helps
Answer:
A.) 27000 kgm/s
18000 kgm/s
B.) Va = 22 m/s
C.) 19800 kgm/s
25200 kgm/s
Explanation: Given that the velocity of A and B are 30 m/s and 20 m/s. And of the same mass M = 9 × 10^5g
M = 9×10^5/1000 = 900 kg
A.) Initial momentum of A
Mu = 900 × 30 = 27000 kgm/s
Initial momentum of B
Mu = 900 × 20 = 18000 kgm/s
B.) if they have an accident and then the velocity of the B is 28 m/s, find out velocity of A.
Momentum before impact = momentum after impact
Given that Vb = 28 m/s
27000 + 18000 = 900Va + 900 × 28
45000 = 900Va + 25200
900Va = 45000 - 25200
900Va = 19800
Va = 19800/900
Va = 22 m/s
C.) Momentum of A after impact
MV = 900 × 22 = 19800 kgm/s
Momentum of B after impact
MV = 900 × 28 = 25200 kgm/s