Answer:
T_ww = 43,23°C
Explanation:
To solve this question, we use energy balance and we state that the energy that enters the systems equals the energy that leaves the system plus losses. Mathematically, we will have that:
E_in=E_out+E_loss
The energy associated to a current of fluid can be defined as:
E=m*C_p*T_f
So, applying the energy balance to the system described:
m_CW*C_p*T_CW+m_HW*C_p*T_HW=m_WW*C_p*T_WW+E_loss
Replacing the values given on the statement, we have:
1.0 kg/s*4,18 kJ/(kg°C)*25°C+0.8 kg/s*4,18 kJ/(kg°C)*75°C=1.8 kg/s*4,18 kJ/(kg°C)*T_WW+30 kJ/s
Solving for the temperature Tww, we have:
(1.0 kg/s*4,18 kJ/(kg°C)*25°C+0.8 kg/s*4,18 kJ/(kg°C)*75°C-30 kJ/s)/(1.8 kg/s*4,18 kJ/(kg°C))=T_WW
T_WW=43,23 °C
Have a nice day! :D
The reasoning is wrong if we look into Newton's Law of gravitation.
Newton's law of gravitation states that every particle in the universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.
The law is written as follows;


The distance between the two particles, is a function of force and their masses not necessarily time of motion.
In the given problem only time of motion was considered which is wrong.
Thus, the reasoning is wrong if we look into Newton's Law of gravitation.
Learn more here: brainly.com/question/19680441
Answer:
Gain in capital = $ 70.72
Explanation:
Given:
- The price of stocks when purchased P_o = $ 224.84
- The price of stocks when sold P_s = $ 295.56
Find:
what would be your capital gain (loss) on the sale, ignoring commissions
Solution:
- The capital gain or loss on the selling of stocks stems from the difference of buying and selling value of stocks. The original price of stock was P_o and the selling price would be P_s. The difference would be:
capital gain = P_s - P_o
capital gain = $295.56 - $224.84
capital gain = $ 70.72
- Hence, there would be a gain in capital if sold today for about $ 70.72.
According to Newton's 2nd law of motion:
F = m * a where F is the force applied in Newtons, m is the mass of the object in kg, and a is the acceleration of the object in m/

.
Therefore the force applied in this situation is simply:
F = 6 kg * 2.3 m/

= 13.8 N
Hope this helps!