How to solve your problem
9−4+3
9x−4+3x9x-4+3x9x−4+3x
Simplify
1
Combine like terms
9−4+3
9x−4+3x{\color{#c92786}{9x}}-4+{\color{#c92786}{3x}}9x−4+3x
12−4
12x−4{\color{#c92786}{12x}}-412x−4
Solution
12−4
SO D
Hi there!
In order to use the elimination method, you have to create one variable that has the same coefficient. This is to be able to eliminate one variable and have a one variable equation (which you can then solve).
In your case, we'll have the "x" have the same coefficient by multiplying the top equation by 4 and the bottom equation by 2 :
4( -2x + 3y = -4) → -8x + 12y = -16
2( 4x - 2y = 16) → 8x - 4y = 32
Now that both of your equation have a variable with the same coefficient, you need to choose rather you need to add or subtract the equations in order to get rid of the variable (in this case we want to get rid of the "x").
In your case, you want to add both equation together which will give you :
8y = 16
Now that you only have one variable, all you need to do now is solve the equation for "y" :
8y = 16
Divide each side of the equation by 8
y = 2 → Your answer
There you go! I really hope this helped, if there's anything just let me know! :)
Answer:
Total number of orange trees = 77 trees
Step-by-step explanation:
Given:
Total number of rows = 15
Total number of cherry rows = 4
Number of trees in each rows = 7
Find:
Total number of orange trees
Computation:
Total number of orange trees = [Total number of rows - Total number of cherry rows][Number of trees in each rows]
Total number of orange trees = [15 - 4]7
Total number of orange trees = [11]7
Total number of orange trees = 77 trees
Full turn = 360 degrees
2/3 of a full turn.
So 1/3 of a turn is 120 degrees
Since it’s 2/3, you add another 120 to make 240
X=7 (let me know if you would like to know how I got the answer)