I don’t think this is algebra 2 but ok
37
I used the formula (32°F − 32) × 5/9 = 0°C (but ofc replaced the numbers with 99)
Yeah and i rounded 98.6 to 99. 99 Fahrenheit is 37.2222... so i rounded it down to 37. So i think the answer is 37.
Answer:
Graphs behave differently at various x-inter cepts. Sometimes the graph will cross over the x-axis at an intercept. Other times the graph will touch the x-axis and bounce off.
Suppose, for example, we graph the function. f(x) = (x+3)(x - 2)²(x+1)³.
Notice in the figure below that the behavior of the function at each of the x-intercepts is different.
Answer:
A.) gf(x) = 3x^2 + 12x + 9
B.) g'(x) = 2
Step-by-step explanation:
A.) The two given functions are:
f(x) = (x + 2)^2 and g(x) = 3(x - 1)
Open the bracket of the two functions
f(x) = (x + 2)^2
f(x) = x^2 + 2x + 2x + 4
f(x) = x^2 + 4x + 4
and
g(x) = 3(x - 1)
g(x) = 3x - 3
To find gf(x), substitute f(x) for x in g(x)
gf(x) = 3( x^2 + 4x + 4 ) - 3
gf(x) = 3x^2 + 12x + 12 - 3
gf(x) = 3x^2 + 12x + 9
Where
a = 3, b = 12, c = 9
B.) To find g '(12), you must first find the inverse function of g(x) that is g'(x)
To find g'(x), let g(x) be equal to y. Then, interchange y and x for each other and make y the subject of formula
Y = 3x + 3
X = 3y + 3
Make y the subject of formula
3y = x - 3
Y = x/3 - 3/3
Y = x/3 - 1
Therefore, g'(x) = x/3 - 1
For g'(12), substitute 12 for x in g' (x)
g'(x) = 12/4 - 1
g'(x) = 3 - 1
g'(x) = 2.
Answer:
as shown in the attached file
Step-by-step explanation:
The detailed steps and application of differential equation, the use of integrating factor to generate the solution and to solve for the initial value problem is as shown in the attached file.
Answer:
Step-by-step explanation:
Area of a square = s²
s is the side length of the square
Given
s = 2^{7 1/2}
s = 2^15/2
Area = ( 2^15/2)²
Area = 2^15
Hence two area of the square is 2^15 inches