Distance = speed * time
d = 65.2 * 1.8
d = 117.36 miles <==
8 ÷ (2 3/4) = 32/11
248 ÷ (32/11) = B. 85 1/4 cubic feet
Answer:
![\left[\begin{array}{ccc}7\\4\\2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%5C%5C4%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
The answer is a single-column matrix (7,4,2)
Step-by-step explanation:
In such multiplication of matrices, you have to proceed by multiplying each ROW of the first matrix by the COLUMN of the second matrix. So,
![\left[\begin{array}{ccc}3&6&1\end{array}\right] * \left[\begin{array}{ccc}2\\0\\1\end{array}\right] = (3 * 2) + (6 * 0) + (1 * 1) = 6 + 0 + 1 = 7](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%266%261%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C0%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%3D%20%283%20%2A%202%29%20%2B%20%286%20%2A%200%29%20%2B%20%281%20%2A%201%29%20%3D%206%20%2B%200%20%2B%201%20%3D%207)
then...
![\left[\begin{array}{ccc}2&4&0\end{array}\right] * \left[\begin{array}{ccc}2\\0\\1\end{array}\right] = (2 * 2) + (4 * 0) + (0 * 1) = 4 + 0 + 0 = 4](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%264%260%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C0%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%3D%20%282%20%2A%202%29%20%2B%20%284%20%2A%200%29%20%2B%20%280%20%2A%201%29%20%3D%204%20%2B%200%20%2B%200%20%3D%204)
and
![\left[\begin{array}{ccc}0&6&2\end{array}\right] * \left[\begin{array}{ccc}2\\0\\1\end{array}\right] = (0 * 2) + (6 * 0) + (2 * 1) = 0 + 0 + 2= 2](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%266%262%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C0%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%3D%20%280%20%2A%202%29%20%2B%20%286%20%2A%200%29%20%2B%20%282%20%2A%201%29%20%3D%200%20%2B%200%20%2B%202%3D%202)
I hope it helps.
Answer: So i think what you want is for the first one you want the crocadile mouths pointing to the nine, and the same for the second, it is kinda confusing pic
Answer:
We want to graph the inequality:
3x - 2y ≤ 6
The first step is to write this as a linear equation, to do it, we can isolate y in one side of the inequality.
3x ≤ 6 + 2y
3x - 6 ≤ 2y
(3/2)x - 6/2 ≤ y
(3/2)x - 3 ≤ y
or:
y ≥ (3/2)x - 3
Because we have the symbol ≥
The points on the line are solutions, then the first part is to graph the line:
y = (3/2)*x - 3
Next, we have:
y equal to or larger than (3/2)*x - 3
Then we need to shade all the region above that line.
The graph can be seen below.