This question doesn't appear to be complete
Answer:
83%
Explanation:
On the surface, the weight is:
W = GMm / R²
where G is the gravitational constant, M is the mass of the Earth, m is the mass of the shuttle, and R is the radius of the Earth.
In orbit, the weight is:
w = GMm / (R+h)²
where h is the height of the shuttle above the surface of the Earth.
The ratio is:
w/W = R² / (R+h)²
w/W = (R / (R+h))²
Given that R = 6.4×10⁶ m and h = 6.3×10⁵ m:
w/W = (6.4×10⁶ / 7.03×10⁶)²
w/W = 0.83
The shuttle in orbit retains 83% of its weight on Earth.
Answer:
A: All of the above
Explanation:
The instantaneous speed of an object is simply the current seed of the object at any given time. The SI unit is m/S and it is a vector quantity.
Therefore, according to the given options, they all have SI units that are consistent with distance and time which makes them all an example of instantaneous speed.