Answer:
550000000N/m
Explanation:
Given that a copper wire has a radius of 2.9 mm. When forces of a certain equal magnitude but opposite directions are applied to the ends of the wire, the wire stretches by 5.0×10−3 of its original length.
Original length L = 0.005L
the strain = extension/ original length
the strain = 0.005L / L
the strain = 0.005
Young modulus = stress / strain
11 × 10^10 = stress / 0.005
Cross multiply
Stress = 11 × 10^10 × 0.005
Stress = 550 000000 N/m
Therefore, the tensile stress on the wire is 550000000 N/m.
Answer:
option C
Explanation:
the ball is moving circular around the pole
Angular momentum of the system is constant
J = I ω
now,



the rope radius is decreasing as it revolving around the pole
angular speed is inversely proportional to radius.
so, the angular speed will increase.
The correct answer is option C
Answer:
The mechanical advantage of using a lever is affected by the distance between the effort and the fulcrum and by the placement of the load. ... When the fulcrum is centered between the load and the lift, the amount of effort exerted to push down on the lever equals the amount of the load being lifted on the other end.