when the apple moves in a horizontal circle, the tension force in the string provides the necessary centripetal force to move in circle. the tension in the string is given as
T=mv²/r
where T = tension force in the string , m = mass of the apple
v = speed of apple , r = radius of circle.
clearly , tension force depends on the square of the speed. hence greater the speed, greater will be the tension force.
at some point , the speed becomes large enough that it makes the tension force in the string becomes greater than the tensile strength of the string. at that point , the string breaks
False. it's depend on g -constant.
Answer:

Explanation:
= Cambio en la longitud de la cuerda = 0.25 cm
T = tensión en cuerda
A = Área de la cadena = 
d = Diámetro de la cuerda = 0.2 cm
L = Longitud original de la cuerda = 1.6 m
El cambio de longitud de una cuerda viene dado por

La tensión en la cuerda es
.
Answer:

Explanation:
By Einstein's Equation of photoelectric effect we know that

here we know that
= energy of the photons incident on the metal
= minimum energy required to remove photons from metal
= kinetic energy of the electrons ejected out of the plate
now we know that it requires 351 nm wavelength of photons to just eject out the electrons
so we can say

here we know that

now we have

now by energy equation above when photon of 303 nm incident on the surface





Answer:
Explanation:
According to the property of a conductor, the entire charge will reside on the outer surface of the conductor, there is no charge on the inner side of the conductor. As the uncharged metal ball touches the inner surface of the conductor, it does not attain any charge as the inner side of the conductor has no charge.
So option (c) is correct.