Answer:
The value is 
Explanation:
From the question we are told that
The radius of the inner conductor is 
The radius of the outer conductor is 
The potential at the outer conductor is 
Generally the capacitance per length of the capacitor like set up of the two conductors is
![C= \frac{2 * \pi * \epsilon_o }{ ln [\frac{r_2}{r_1} ]}](https://tex.z-dn.net/?f=C%3D%20%5Cfrac%7B2%20%2A%20%5Cpi%20%2A%20%5Cepsilon_o%20%7D%7B%20ln%20%5B%5Cfrac%7Br_2%7D%7Br_1%7D%20%5D%7D)
Here
is the permitivity of free space with value 
=> ![C= \frac{2 * 3.142 * 8.85*10^{-12} }{ ln [\frac{0.003}{0.001} ]}](https://tex.z-dn.net/?f=C%3D%20%5Cfrac%7B2%20%2A%20%203.142%20%20%2A%208.85%2A10%5E%7B-12%7D%20%20%7D%7B%20ln%20%5B%5Cfrac%7B0.003%7D%7B0.001%7D%20%5D%7D)
=> 
Generally given that the potential of the outer conductor with respect to the inner conductor is positive it then mean that the outer conductor is positively charge
Generally the line charge density of the outer conductor is mathematically represented as

=> 
=> 
Generally the surface charge density is mathematically represented as
here 
=> 
=> 
IT WOULD act like an electromagnet even now
this same thing happens when we make use of solenoids. we have a wire wound around a hollow pipe , and that pipe would have air in it . as there is no natural vaccum here, the air will get ionised.. spreading charges .. around itself..
Calculating Average Atomic Mass<span>. The </span>average atomic mass of an element<span> is the sum of the </span>masses<span> of its isotopes, each multiplied by its natural abundance (the decimal associated with percent of </span>atoms<span> of that </span>element<span> that are of a given isotope).</span>
We can solve the problem by using conservation of momentum.
The player + ball system is an isolated system (there is no net force on it), therefore the total momentum must be conserved. Assuming the player is initially at rest with the ball, the total initial momentum is zero:

The total final momentum is:

where
is the momentum of the player and
is the momentum of the ball.
The momentum of the ball is: 
While the momentum of the player is:
, where M=59 kg is the player's mass and vp is his velocity. Since momentum must be conserved,

so we can write

and we find

and the negative sign means that it is in the opposite direction of the ball.
Answer:
8.83m
Explanation:
Given parameters:
Acceleration = 7.8m/s²
Initial velocity = 0m/s
distance covered = 5m
Unknown:
Final velocity = ?
Solution:
The equation to solve this problem with is given as;
V² = U² + 2aS
V is the final velocity
U is the initial velocity
a is the acceleration
S is the distance
Input the parameters and solve;
V² = 0² + 2 x 7.8 x 5 = 78
V = √78 = 8.83m