Constant acceleration of plane = 3m/s²
a) Speed of the plane after 4s
Acceleration = speed/time
3m/s² = speed/4s
S = 12m/s
The speed of the plane after 4s is 12m/s.
b) Flight point will be termed as the point the plane got initial speed, u, 20m/s
Find speed after 8s, v
a = 3m/s²
from,
a = <u>v</u><u> </u><u>-</u><u> </u><u>u</u>
t
3 = <u>v</u><u> </u><u>-</u><u> </u><u>2</u><u>0</u>
8
24 = v - 20
v = 44m/s
After 8s the plane would've 44m/s speed.
Answer:

Explanation:
The rotation rate of the man is:



The resultant rotation rate of the system is computed from the Principle of Angular Momentum Conservation:
![(90\,kg)\cdot (5\,m)^{2}\cdot (0.16\,\frac{rad}{s} ) = [(90\,kg)\cdot (5\,m)^{2}+20000\,kg\cdot m^{2}]\cdot \omega](https://tex.z-dn.net/?f=%2890%5C%2Ckg%29%5Ccdot%20%285%5C%2Cm%29%5E%7B2%7D%5Ccdot%20%280.16%5C%2C%5Cfrac%7Brad%7D%7Bs%7D%20%29%20%3D%20%5B%2890%5C%2Ckg%29%5Ccdot%20%285%5C%2Cm%29%5E%7B2%7D%2B20000%5C%2Ckg%5Ccdot%20m%5E%7B2%7D%5D%5Ccdot%20%5Comega)
The final angular speed is:

The air pressure in the pressurized tank will be 24014.88 N/m²,196.2 N/m²,2084.625 N/m².
<h3 /><h3>What is pressure?</h3>
The force applied perpendicular to the surface of an item per unit area across which that force is spread is known as pressure.
It is denoted by P. The pressure relative to the ambient pressure is known as gauge pressure.
Pressure is found as the product of the density,acceleraton due to gravity and the height.
P₁=ρ₁gh₁
P₁=13,600 kg/m³×9.81 (m/s²)×0.18 m
P₁=24014.88 N/m²
P₂=ρ₂gh₂
P₂= 1000 kg/m³×9.81 (m/s²)×00.2 m
P₂=196.2 N/m²
P₃=ρ₃gh₃
P₃=850 kg/m³×9.81 (m/s²)×0.25
P₃=2084.625 N/m²
Hence,the air pressure in the pressurized tank will be 24014.88 N/m²,196.2 N/m²,2084.625 N/m².
To learn more about the pressure refer to the link;
brainly.com/question/356585
#SPJ4
Yes, It has a stored energy in that stone.
A transfer of charge is actually a gross movement of electrons. Charged objects have a normal or "balanced" state. This state is balanced in a sense of positive charges (protons) and negative charges (electrons). When an object has an excess of deficiency of electrons, it will try to regain its balance by releasing or accepting electrons.