<span>Anger is to angry as fire is to blazing. </span>
Answer:
Velocity(v) = frequency(f) × wavelength
f = 0.3165
Wavelength = 2×length(L)
L = 157cm
Convert the length in centimetres to metre = 1.57m
v = 2×1.57 × 0.3165
v = 0.99m/s
Approx. 1m/s
Explanation:
The velocity of a wave is the product of its frequency and it's wavelength. The frequency is already known. The wavelength is the distance between two successive wave crests which is formed by sloshing water back and forth in the bath tub. Sloshing water to one end of the tub will produce a wave crest first at that end then the other completing a cycle. The wavelength will be twice the length of the bath tub as it is the distance that both crests are formed.
Wave crest is the highest point of a wave, and in this case is where the water rises to a high point in the bath tub
S=Vt
110=V(72)
110/72=V
V=1.527m/s
Answer:
Speed of another player, v₂ = 1.47 m/s
Explanation:
It is given that,
Mass of football player, m₁ = 88 kg
Speed of player, v₁ = 2 m/s
Mass of player of opposing team, m₂ = 120 kg
The players stick together and are at rest after the collision. It shows an example of inelastic collision. Using the conservation of linear momentum as :

V is the final velocity after collision. Here, V = 0 as both players comes to rest after collision.



So, the speed of another player is 1.47 m/s. Hence, this is the required solution.