Answer:
The charge on the third object is − 21.7nC
Explanation:
From Gauss's Law
Φ = Q/ε₀
where;
Φ is the total electric flux through the shell = − 533 N⋅m²/C
Q is the total charge Q in the shell = ?
ε₀ is the permittivity of free space = 8.85 x 10⁻¹²
From this equation; Φ = Q/ε₀
Q = Φ * ε₀ = − 533 * 8.85 x 10⁻¹²
Q = −4.7 X 10⁻⁹ C = -4.7nC
Q = q₁ + q₂ + q₃
− 4.7nC = − 14.0 nC + 31.0 nC + q₃
− 4.7nC − 17nC = q₃
− 21.7nC = q₃
Therefore, the charge on the third object is − 21.7nC
Answer:
30643 J
Explanation:
= Vacuum permeability = 
t = Time taken = 1 ns
c = Speed of light = 
= Maximum electric field strength = 
A = Area = 
Magnitude of magnetic field is given by

Intensity is given by

Power, intensity and time have the relation

The energy it delivers is 30643 J
<u>Halfway</u><u> between the like poles of two magnets, because the field lines bend away and do not enter this area.</u>
How does a magnetic field diagram show where the field is strongest?
- The magnetic field lines do not ever cross.
- The lines include arrowheads to indicate the direction of the force exerted by a magnetic north pole.
- The closer the lines are to the poles, the stronger the magnetic field (thus the magnetic field from a bar magnet is highest closest to the poles).
Where is magnetic field the strongest and weakest on a magnet?
- The bar magnet's magnetic field is strongest at its core and weakest between its two poles.
- The magnetic field lines are densest immediately outside the bar magnet and least dense in the core.
Which two locations on the magnet would have the greatest attractive forces?
- Inside the magnet itself, the field lines run from the south pole to the north pole.
- The magnetic field is strongest in areas of greatest density of magnetic field lines, or areas of the greatest magnetic flux density.
Learn more about magnetic field
brainly.com/question/11514007
#SPJ4
The conversion factor you use is 100 cm = 1 m.
You can divide 20 by 100 to get the answer.
20 cm/100 cm =.2 m
Hope this helped!
It could rotate while not advancing distance