Answer:
The time constant is 1.049.
Explanation:
Given that,
Charge 
We need to calculate the time constant
Using expression for charging in a RC circuit
![q(t)=q_{0}[1-e^{-(\dfrac{t}{RC})}]](https://tex.z-dn.net/?f=q%28t%29%3Dq_%7B0%7D%5B1-e%5E%7B-%28%5Cdfrac%7Bt%7D%7BRC%7D%29%7D%5D)
Where,
= time constant
Put the value into the formula
![0.65q_{0}=q_{0}[1-e^{-(\dfrac{t}{RC})}]](https://tex.z-dn.net/?f=0.65q_%7B0%7D%3Dq_%7B0%7D%5B1-e%5E%7B-%28%5Cdfrac%7Bt%7D%7BRC%7D%29%7D%5D)





Hence, The time constant is 1.049.
Answer:
T is less than or equal to 19 N
Explanation:
Answer:
The central blue square in between the lower pair of magnet has the least force of repulsion.
Explanation:
We can explain this using the dual nature of magnets.
Each magnet must have two poles namely:
-North pole
-South pole
We assume that the magnetic lines of forces enters from south pole and leaves from the north pole.
When brought together, like poles repel each other while opposite poles attract each other.
In the picture, the lower two magnets have opposite poles facing each other, hence the force of repulsion is minimum there and the force of attraction is maximum.
Let the observer be 'd' distance away from the thunderstorm and let light take 't' time to reach the observer
Since the speed of sound and light remains constant in a particular medium, we can use
Speed = Distance/Time
For light,
3 x 10^8 = d/t
t = d/(3 x 10^8) -1
For sound,
339 = d/(t + 30) -2
Putting value from 1 in 2.
d = 10^4 m(approx)
Answer:
1) Current decreases; 2) Inverse proportionally; 3) 1[A]
Explanation:
1)
As we can see as the resistance increases the current decreases, if we take two points as an example, when the resistance is equal to 50 [ohms] the current is equal to 1[amp] and when the resistance is equal to 200 [ohms] the current tends to have a value below 0.5 [amp]. Thus demonstrating the decrease in current.
2)
Inverse proportionally, by definition we know that the law of ohm determines the voltage according to resistance and amperage. This is the voltage will be equal to the product of the voltage by the resistance.
![V=I*R\\V = voltage [volts]\\I = current[amp]\\R = resistance [ohms]](https://tex.z-dn.net/?f=V%3DI%2AR%5C%5CV%20%3D%20voltage%20%5Bvolts%5D%5C%5CI%20%3D%20current%5Bamp%5D%5C%5CR%20%3D%20resistance%20%5Bohms%5D)
where:

And whenever we have in a fractional number the denominator the variable we are interested in, we can say that this is inversely proportional to the value we are interested in determining. In this case, we can see from the two previous expressions that both the current and the resistance appear in the denominator, therefore they are inversely proportional to each other.
3)
If we place ourselves on the graph on the resistance axis, we see that at 50 [ohm] will correspond a current value equal to 1 [A].