Refer to the diagram shown below.
Assume that
(a) The piano rolls down on frictionless wheels,
(b) Wind resistance is negligible.
The distance along the ramp is
d = (1.3 m)/sin(22°) = 3.4703 m
The component of the piano's weight along the ramp is
mg sin(22°)
If the acceleration down the ramp is a, then
ma = mg sin(22°)
a = g sin(22°) = (9.8 m/s²) sin(22°) = 3.671 m/s²
The time, t, to travel down the ramp from rest is given by
(3.4703 m) = 0.5*(3.671 m/s²)*(t s)²
t² = 3.4703/1.8355 = 1.8907
t = 1.375 s
Answer: 1.375 s
Frequency decreases whilst wavelength increases and the opposite also occurs
Answer;
The mass value for the above kinetic energy equation is 400.0000 kg. This is equal to:
■ 400,000.0000 g.
■ 14,109.6000 ounces.
■ 881.8480 pounds.
Answer:
a.
b.
Explanation:
We are given that




a.We have to find the angle


b. We have to find the speed 
According to law of conservation of momentum


