B) The amount of work done
Answer:
The rate of change of the area when the bottom of the ladder (denoted by
) is at 36 ft. from the wall is the following:

Explanation:
The Area of the triangle is given by
where
(by using the Pythagoras' Theorem) and
is the length of the base of the triangle or the distance between the bottom of the ladder and the wall.
The area is then

The rate of change of the area is given by its time derivative


Product rule
Chain rule


In here we can identify
,
and
.
The result is then

Answer:
![125\sqrt[4]{8}](https://tex.z-dn.net/?f=125%5Csqrt%5B4%5D%7B8%7D)
Explanation:
A number of the form

can be re-written in the radical form as follows:
![\sqrt[n]{a^m}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5Em%7D)
In this problem, we have:
a = 1,250
m = 3
n = 4
So, if we apply the formula, we get
![1,250^{\frac{3}{4}}=\sqrt[4]{(1,250)^3}](https://tex.z-dn.net/?f=1%2C250%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%3D%5Csqrt%5B4%5D%7B%281%2C250%29%5E3%7D)
Then, we can rewrite 1250 as

So we can rewrite the expression as
![=\sqrt[4]{(2\cdot 5^4)^3}=5^3 \sqrt[4]{2^3}=125\sqrt[4]{8}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B4%5D%7B%282%5Ccdot%205%5E4%29%5E3%7D%3D5%5E3%20%5Csqrt%5B4%5D%7B2%5E3%7D%3D125%5Csqrt%5B4%5D%7B8%7D)
Answer:
i think it would be which angle converts the most potential energy to into kinetic energy of the turbine
Explanation: because the windmill makes kinetic energy and converts it into mechanical power. then a generator takes the mechanical power and makes it into electricity
Answer:
.
Explanation:
If the mass of an object is
and the velocity of that object is
, the linear momentum of that object would be
.
Assume that the initial velocity of the mass is positive (
.) However, the direction of the velocity is reversed after the impact. Thus, the sign of the new velocity of the object would be negative- the opposite of that of the initial velocity. The new velocity would be
.
Thus, the change in the velocity of the mass would be:
.
The change in the linear momentum of the mass would be:
.
Thus, the magnitude of the change of the linear momentum would be
.