It represents the thing the avadocate needs to be muiltiplied by
The requirement is that every element in the domain must be connected to one - and one only - element in the codomain.
A classic visualization consists of two sets, filled with dots. Each dot in the domain must be the start of an arrow, pointing to a dot in the codomain.
So, the two things can't can't happen is that you don't have any arrow starting from a point in the domain, i.e. the function is not defined for that element, or that multiple arrows start from the same points.
But as long as an arrow start from each element in the domain, you have a function. It may happen that two different arrow point to the same element in the codomain - that's ok, the relation is still a function, but it's not injective; or it can happen that some points in the codomain aren't pointed by any arrow - you still have a function, except it's not surjective.
Answer:
Data set 1
Step-by-step explanation:
Because for every x there is only one y
Answer:
a and d
Step-by-step explanation:
v and w are parallel lines
R is the transversal
Alternate exterior means on the opposite sides of the transversal and outside of the parallel linea
a and d are alternate exterior angles
Answer:
10 centimeters.
Step-by-step explanation:
First, we need to remember what's the formula to get the volume of a rectangular solid and a cube.
The volume of the first equals:
Volume = Length x Width x Height
While the volume of the cube is:
where a is the edge.
We are given the measures of the rectangular solid so we can calculate its volume:
cubic cms.
Now, we know that both the volume of the rectangular solid and the cube are the same so we will use this information to calculate the edge of the cube.
![1000=a^3 \\\sqrt[3]{1000} =\sqrt[3]{a^3} \\10=a](https://tex.z-dn.net/?f=1000%3Da%5E3%20%5C%5C%5Csqrt%5B3%5D%7B1000%7D%20%3D%5Csqrt%5B3%5D%7Ba%5E3%7D%20%5C%5C10%3Da)
Thus the length of an edge of the cube is 10 centimeters