Workers being paid on commission get paid based solely on their performance.
They get paid based on their performance and not their hours.
I've attached the complete question.
Answer:
Only participant 1 is not cheating while the rest are cheating.
Because only participant 1 has a z-score that falls within the 95% confidence interval.
Step-by-step explanation:
We are given;
Mean; μ = 3.3
Standard deviation; s = 1
Participant 1: X = 4
Participant 2: X = 6
Participant 3: X = 7
Participant 4: X = 0
Z - score for participant 1:
z = (x - μ)/s
z = (4 - 3.3)/1
z = 0.7
Z-score for participant 2;
z = (6 - 3.3)/1
z = 2.7
Z-score for participant 3;
z = (7 - 3.3)/1
z = 3.7
Z-score for participant 4;
z = (0 - 3.3)/1
z = -3.3
Now from tables, the z-score value for confidence interval of 95% is between -1.96 and 1.96
Now, from all the participants z-score only participant 1 has a z-score that falls within the 95% confidence interval.
Thus, only participant 1 is not cheating while the rest are cheating.
Given that the roots of the equation x^2-6x+c=0 are 3+8i and 3-8i, the value of c can be obtained as follows;
taking x=3+8i and substituting it in our equation we get:
(3+8i)^2-6(3+8i)+c=0
-55+48i-18-48i+c=0
collecting the like terms we get:
-55-18+48i-48i+c=0
-73+c=0
c=73
the answer is c=73
Answer:
The answer is A.
Step-by-step explanation:
Lets call f(x)=y, so y= 4*(3*x-5), we want to find 'x', using 'y' as a the variable.

Now lets change the name of 'y' to 'x', and 'x' to f^-1(x).
f-1(x) = (x+20)/12
<h2>
Answer:</h2>
1/2
<h2>
Step-by-step explanation:</h2><h3>Known :</h3>
- The school football team has a match tomorrow
- The probability of the team winning is 1/6
- The probability of the team drawing is 2/6
<h3>
Asked :</h3>
- The probability of the team losing
<h3>Solution :</h3>
Probability of the team losing the match = 1 - 1/6 - 2/6
Probability of the team losing the match = 6/6 - 1/6 - 2/6
Probability of the team losing the match = 3/6
Probability of the team losing the match = 1/2
<h3>Conclusion :</h3>
The probability of the team losing the match is 1/2