A- PRICE
B-QUANTITY
C-SUPPLY
D-DEMAND
E-EQUILIBRIUM POINT
Explanation:
It is the Supply Demand curve in Economics. It gives relationship between price and quantity
Explanation:
KE = 1/2*m*v^2
mass won't change
but velocity is
A: the force is pushing against the direction of the object, so velocity is decreasing, so KE is decreasing
B: the F net line is pretty much straight up, which means there is no net force pushing to the left, but velocity is still increasing
Why? Because if you use the pythagorean theorem, the hypotenuse is always longer than the legs.
Note: velocity only ever stays the same if there is no net force (or 0 acceleration), so all four of these are either decreasing or increasing
C: there is a net force to the right, so velocity is increasing
D: There is a net force to the right but velocity is to the left, so velocity is decreasing
Hope I got these right
Answer:
The answer is below
Explanation:
a) The change in energy is the difference between the final energy and the initial energy.
ΔE (energy change) = Ef (final energy) - Ei (initial energy)
The negative sign shows that energy is lost to the environment. Hence 0.334 J is lost to the environment.
b) According to the law of conservation of energy, energy cannot be created or destroyed but transformed from one form to another.
The oscillating object loses energy due to wind resistance, friction between the spring and the object. Given that the air is frictionless, hence the energy loss is due to friction which is converted to heat.
Mechanical Energy: 10.81 J given that .
<h3>Explanation</h3>
The mechanical energy of an object is the sum of its kinetic and potential energy.
Kinetic Energy of this object:
Gravitational Potential Energy of this object:
.
.
Answer:
1.2 ft/s or 72 ft/min
Explanation:
To solve this problem, we can use the relationship between the angular and linear speed for this particular movement (rotation). As the speed of the current is tangent to the trajectory of the wheel we can define as follows:
The speed of the current is 72 ft/min