If a star collapses to a tenth its size, gravitation at its surface increases by 100 times as much.
The contraction of an astronomical object caused by its own gravity, which tends to pull stuff inward toward the center of gravity, is known as gravitational collapse. A cloud of interstellar matter gradually collapses under the influence of gravity to form a star. The temperature rises as a result of the compression brought on by the collapse until thermonuclear fusion takes place in the star's core. At this point, the collapse gradually comes to an end as the outward heat pressure equalizes the gravitational forces. Following that, the star is in a condition of dynamic equilibrium. A star will repeatedly collapse once all of its energy sources have been used up until it reaches a new equilibrium condition.
To learn more about Star:
brainly.com/question/24493066
#SPJ4
Answer:
Because it is said that the earth rotates and revolves around the sun and moon so it is impossible for the earth not to be spinning.
Explanation:
Answer:

Explanation:
Given:
Capacitance, C = 85 pF = 85 × 10⁻¹² F
Resistance, R = 75 MΩ = 75×10⁶Ω
Charge in capacitor at any time 't' is given as:

where,
Q₀ = Maximum charge = CE
E = Initial voltage
t = time
also, Q = CV
V= Final voltage = 90% of E = 0.9E
thus, we have

or

or

taking log both sides, we get

or

or

or

<h2><u><em>Well, you see, that depends. </em></u></h2><h2><u><em>The firsy thing we have to tak intp account is the angle at witch the sun's rays hit the earth, and that fact can make all the difference, seeing as it does discriminate against seasons. It's more likely that i the winter, a more drastic effect would talk.</em></u></h2><h2 /><h2 /><h2 /><h2>oωo</h2>
Answer:
Angle θ = 30.82°
Explanation:
From Malus’s law, since the intensity of a wave is proportional to its amplitude squared, the intensity I of the transmitted wave is related to the incident wave by; I = I_o cos²θ
where;
I_o is the intensity of the polarized wave before passing through the filter.
In this question,
I is 0.708 W/m²
While I_o is 0.960 W/m²
Thus, plugging in these values into the equation, we have;
0.708 W/m² = 0.960 W/m² •cos²θ
Thus, cos²θ = 0.708 W/m²/0.960 W/m²
cos²θ = 0.7375
Cos θ = √0.7375
Cos θ = 0.8588
θ = Cos^(-1)0.8588
θ = 30.82°