Answer:
Power = 21[W]
Explanation:
Initial data:
F = 35[N]
d = 18[m]
In order to solve this problem we must remember the definition of work, which tells us that it is equal to the product of a force for a distance.
Therefore:
Work = W = F*d = 35*18 = 630 [J]
And power is defined as the amount of work performed in a time interval.
Power = Work / time
Time = t = 30[s]
Power = 630/30
Power = 21 [W]
Answer:
887.1Hz
Explanation:
Given parameters:
Speed of sound wave = 330m/s
Wavelength = 0.372m
Unknown:
Frequency = ?
Solution:
To solve this problem, we use the expression below:
Speed = Frequency x wavelength
330 = Frequency x 0.372
Frequency = 887.1Hz
Resistance = (voltage) / (current)
Resistance = (6.0 v) / (2.0 A)
Resistance = 3.0 ohms
Refer to the diagram shown below.
Let I = the moment of inertia of the wheel.
α = 0.81 rad/s², the angular acceleration
r = 0.33 m, the radius of the weel
F = 260 N, the applied tangential force
The applied torque is
T = F*r
= (260 N)*(0.33 m)
= 85.8 N-m
By definition,
T = I*α
Therefore,
I = T/α
= (85.8 N-m)/(0.81 rad/s²)
= 105.93 kg-m²
Answer: 105.93 kg-m²