Answer: Equilibrium constant is 0.70.
Explanation:
Initial moles of
= 0.35 mole
Volume of container = 1 L
Initial concentration of
Initial moles of
= 0.40 mole
Volume of container = 1 L
Initial concentration of
equilibrium concentration of
[/tex]
The given balanced equilibrium reaction is,

Initial conc. 0.35 M 0.40M 0 0
At eqm. conc. (0.35-x) M (0.40-x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[CO_2]\times [H_2O]}{[CO]\times [H_2O]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO_2%5D%5Ctimes%20%5BH_2O%5D%7D%7B%5BCO%5D%5Ctimes%20%5BH_2O%5D%7D)

we are given : (0.35-x)= 0.18
x = 0.17
Now put all the given values in this expression, we get :


Thus the value of the equilibrium constant is 0.70.
They will mold into different shapes
Answer:
The order of solubility is AgBr < Ag₂CO₃ < AgCl
Explanation:
The solubility constant give us the molar solubilty of ionic compounds. In general for a compound AB the ksp will be given by:
Ksp = (A) (B) where A and B are the molar solubilities = s² (for compounds with 1:1 ratio).
It follows then that the higher the value of Ksp the greater solubilty of the compound if we are comparing compounds with the same ionic ratios:
Comparing AgBr: Ksp = 5.4 x 10⁻¹³ with AgCl: Ksp = 1.8 x 10⁻¹⁰, AgCl will be more soluble.
Comparing Ag2CO3: Ksp = 8.0 x 10⁻¹² with AgCl Ksp = AgCl: Ksp = 1.8 x 10⁻¹⁰ we have the complication of the ratio of ions 2:1 in Ag2CO3, so the answer is not obvious. But since we know that
Ag2CO3 ⇄ 2 Ag⁺ + CO₃²₋
Ksp Ag2CO3 = 2s x s = 2 s² = 8.0 x 10-12
s = 4 x 10⁻12 ∴ s= 2 x 10⁻⁶
And for AgCl
AgCl ⇄ Ag⁺ + Cl⁻
Ksp = s² = 1.8 x 10⁻¹⁰ ∴ s = √ 1.8 x 10⁻¹⁰ = 1.3 x 10⁻⁵
Therefore, AgCl is more soluble than Ag₂CO₃
The order of solubility is AgBr < Ag₂CO₃ < AgCl
<h3><u>Answer;</u></h3>
exceeds evaporation over land
Precipitation<u> exceeds evaporation over land </u>
<h3><u>Explanation;</u></h3>
- <em><u>In order to maintain earths water balance, evaporation exceeds precipitation over oceans but precipitation exceeds evaporation over land.</u></em>
- Water evaporates into the atmosphere from the ocean and to a much lesser extent from the continents. Winds transport this moisture-laden air, often great distances, until conditions cause the moisture to condense into clouds and to precipitate and fall.
- Most precipitation originates by evaporation from the oceans. Over time, water evaporated from the oceans is replenished by inflow of freshwater from rivers and streams.
I believe the answer is B. PO4-3