1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scZoUnD [109]
3 years ago
12

Can someone help with this

Mathematics
1 answer:
Alchen [17]3 years ago
7 0
1. 2 ft 9 in
2. 1 ft 1 in
3. 8 ft 7 in
4. 6 ft 5 in
5. 8 ft. 1 in
6. 4 ft 4 in
7. 10 ft 2 in
You might be interested in
How do you write twelve and five hundred ninety-nine thousandths in standard form
snow_lady [41]
The answer would be 12.599
5 0
3 years ago
If a toy car travels 4025 nanometers how many centimeters did it travel
Nikitich [7]

The answer is 0.0004025

4 0
3 years ago
Four different roads from Town A to Town B, and three different roads run from Town B to Town C. Two roads also run from Town A
LekaFEV [45]

Answer:

196

Step-by-step explanation:

To solve this, I broke it down into two parts.

A. Number of routes going to Town C

4 x 3 + 2 = 14

B. Number of routes going back to Town A

3 x 4 + 2 = 14

From here, it is easy to see what to do. Since there are 14 routes going to Town C and 14 routes going back, the answer is 14 x 14 = 196.

5 0
3 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
Decrease 248 by 30%
Snowcat [4.5K]
Okay this equation really says is what is 30% of 248.

So, lets convert 30% to a fraction, 3/10 which is easier to work with.

All you have to do now is get out a calculator and do 248 *3/10 (or .3) and get 74.4

So subtract 74.4 and get

173.6
8 0
3 years ago
Other questions:
  • Which friend has greatee elevation &amp; which friend is father from sea level?
    15·1 answer
  • Determine whether the two quantities is proportional
    14·1 answer
  • Question
    11·1 answer
  • WILL MARK BRAINLIEST!!Which of these is a compound event?
    11·2 answers
  • What is the domain of the functionf(x)=sqrt 9x ? all real numbers all real numbers greater than but not equal to 0 all real numb
    13·2 answers
  • The function h(x)=x^2+3 and g(x)=x^2-6. If g(x)=h(x)+k, what is the values of k?
    15·1 answer
  • What are the advantages of being paid a salary instead of an hourly rate? What are the disadvantages of being paid a salary inst
    5·1 answer
  • Foiuhgfdknsmlaeszxcyfvugbihnoj
    10·1 answer
  • In the figure below, p ||q. <br> find m 7 if m 8=116°
    5·2 answers
  • PLEASE PLEASE HELP IGNORE MY ANSWERS
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!