Answer:
The 95% confidence interval for the concentration in whitefish found in Yellowknife Bay is (0.2698 mg/kg, 0.3702 mg/kg).
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 8 - 1 = 7
95% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 7 degrees of freedom(y-axis) and a confidence level of
. So we have T = 2.3246
The margin of error is:

In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 0.32 - 0.0502 = 0.2698 mg/kg
The upper end of the interval is the sample mean added to M. So it is 0.32 + 0.0502 = 0.3702 mg/kg
The 95% confidence interval for the concentration in whitefish found in Yellowknife Bay is (0.2698 mg/kg, 0.3702 mg/kg).
Answer:
Step-by-step explanation:
Given
Molly down payment
Dealer's allowance 
For loan amount , It is equal to the difference of molly down payment and dealer allowance
loan amount 
loan amount 
So, Molly needs
loan
Answer: x > 5
Step-by-step explanation: To solve for <em>x</em> in this inequality, our goal is the same as it would be if this were an equation, to get x by itself on one side.
Since 3 is being subtracted from x, we add 3 to
both sides of the inequality to get x > 5.
When graphing x > 5, we have an open circle on 5 and the
open circle tells us that 5 is not part of our answer.
Then we draw an arrow going to the right to represent
all possible solutions to this inequality, any number greater than 5.
Answer:
case 2 with two workers is the optimal decision.
Step-by-step explanation:
Case 1—One worker:A= 3/hour Poisson, ¡x =5/hour exponential The average number of machines in the system isL = - 3. = 4 = lJr machines' ix-A 5 - 3 2 2Downtime cost is $25 X 1.5 = $37.50 per hour; repair cost is $4.00 per hour; and total cost per hour for 1worker is $37.50 + $4.00
= $41.50.Downtime (1.5 X $25) = $37.50 Labor (1 worker X $4) = 4.00
$41.50
Case 2—Two workers: K = 3, pl= 7L= r= = 0.75 machine1 p. -A 7 - 3Downtime (0.75 X $25) = S J 8.75Labor (2 workers X S4.00) = 8.00S26.75Case III—Three workers:A= 3, p= 8L= ——r = 5- ^= § = 0.60 machinepi -A 8 - 3 5Downtime (0.60 X $25) = $15.00 Labor (3 workers X $4) = 12.00 $27.00
Comparing the costs for one, two, three workers, we see that case 2 with two workers is the optimal decision.
Divide it maybe like 50/100?