Answer:
( f h ) (x) = 6 x² - 1
Step-by-step explanation:
<u><em>Step(i)</em></u>:-
Given<em> f(x) = 3 x - 4</em>
g (x) = −x²+2 x−5
<em> h (x) = 2 x² + 1</em>
j (x) = 6 x + 2 - 8 x
K (x) = 3 x² - x + 7
<u><em>Step(ii)</em></u>:-
<em>( f h ) (x) = f ( h (x)) = f ( 2 x² + 1 )</em>
= 3 (2 x² + 1 ) - 4
= 3 ((2 x² ) + 3 - 4
= <em>6 x² - 1</em>
<u><em> Final answer:</em></u>-
∴ <em> ( f h ) (x) = 6 x² - 1</em>
Assuming R and H:
So volume is pir^2 * H = 1500 and H = 1500/(pir^2) while surface area is A= 2pir*H + 2pir^2
A = 2pir(r+h)= 2piR^2 + 2pir*1500/(pir^2)= 2piR^2 + 3000/r
For A to take minimum, get the derivative 4pir - 3000/R^2 and let it be 0
4pir^3 - 3000 = 0
r = cbrt(3000/(4pi)) ≈ 6.20
h = 1500/(pi(6.20)^2) ≈ 12.42
Y - y1 = m(x - x1)
slope(m) = -3
(2,-1)...x1 = 2 and y1 = -1
now we sub....pay attention to ur signs
y - (-1) = -3(x - 2)....not done yet
y + 1 = -3(x - 2) <===
You only put one equation in
Answer:
x=9
Step-by-step explanation:
Plug in 8 for f(x)
8=2x-10
Isolate the x term by moving the 10
18=2x
Isolate the variable
9=x