Answer:
The smallest possible value for x is 
Step-by-step explanation:
we know that
The <u>Triangle Inequality Theorem</u>. states that the sum of the lengths of any two sides of a triangle is greater than the length of the third side
so

The value of x must be greater than 
so
If x must be a whole number
therefore
The smallest possible value for x is 
A circle is a geometric object that has symmetry about the vertical and horizontal lines through its center. When the circle is a unit circle (of radius 1) centered on the origin of the x-y plane, points in the first quadrant can be reflected across the x- or y- axes (or both) to give points in the other quadrants.
That is, if the terminal ray of an angle intersects the unit circle in the first quadrant, the point of intersection reflected across the y-axis will give an angle whose measure is the original angle subtracted from the measure of a half-circle. Since the measure of a half-circle is π radians, the reflection of the angle π/6 radians will be the angle π-π/6 = 5π/6 radians.
Reflecting 1st-quadrant angles across the origin into the third quadrant adds π radians to their measure. Reflecting them across the x-axis into the 4th quadrant gives an angle whose measure is 2π radians minus the measure of the original angle.
Starting January 1, 2015, there are 364 remaining nights.
From 1,001 nights, it will be 637 nights left.
In 2016, there are 366 nights. Subtract it to 637 nights left, you will get 271 nights left.
In 2017, 271 is lesser than 365.
From January to August, the nights left is 28.
<span>
So the date will be September 28, 2017.</span>
-x^2 + 7 is the simplified expression
Answer: The square root of π has attracted attention for almost as long as π itself. When you’re an ancient Greek mathematician studying circles and squares and playing with straightedges and compasses, it’s natural to try to find a circle and a square that have the same area. If you start with the circle and try to find the square, that’s called squaring the circle. If your circle has radius r=1, then its area is πr2 = π, so a square with side-length s has the same area as your circle if s2 = π, that is, if s = sqrt(π). It’s well-known that squaring the circle is impossible in the sense that, if you use the classic Greek tools in the classic Greek manner, you can’t construct a square whose side-length is sqrt(π) (even though you can approximate it as closely as you like); see David Richeson’s new book listed in the References for lots more details about this. But what’s less well-known is that there are (at least!) two other places in mathematics where the square root of π crops up: an infinite product that on its surface makes no sense, and a calculus problem that you can use a surface to solve.
Step-by-step explanation: this is the same paragraph The square root of π has attracted attention for almost as long as π itself. When you’re an ancient Greek mathematician studying circles and squares and playing with straightedges and compasses, it’s natural to try to find a circle and a square that have the same area. If you start with the circle and try to find the square, that’s called squaring the circle. If your circle has radius r=1, then its area is πr2 = π, so a square with side-length s has the same area as your circle if s2 = π, that is, if s = sqrt(π). It’s well-known that squaring the circle is impossible in the sense that, if you use the classic Greek tools in the classic Greek manner, you can’t construct a square whose side-length is sqrt(π) (even though you can approximate it as closely as you like); see David Richeson’s new book listed in the References for lots more details about this. But what’s less well-known is that there are (at least!) two other places in mathematics where the square root of π crops up: an infinite product that on its surface makes no sense, and a calculus problem that you can use a surface to solve.