A. The abundance of the 2nd isotope is 48.119%
B. The mass of the 2nd isotope is 108.905 amu
Let the 1st isotope be A
Let the 2nd isotope be B
A. Determination of the abundance of the 2nd isotope
Abundance of isotope A = 51.881%.
<h3>Abundance of isotope B =? </h3>
Abundance of B = 100 – A
Abundance of B = 100 – 51.881
<h3>Abundance of B = 48.119%</h3>
B. Determination of the mass of the 2nd isotope
Atomic mass of silver = 107.868 amu.
Mass of 1st isotope (A) = 106.906 amu
Abundance of isotope A (A%) = 51.881%.
Abundance of isotope B (B%) = 48.119%
<h3>Mass of 2nd isotope (B) =? </h3>

Therefore, the mass of the 2nd isotope is 108.905 amu
Learn more: brainly.com/question/7955048
Using the specific heat capacity formula:
q = mc ∆ t
60.0 J = (6g)(x)(11*C)
x = 0.9 J/g*C
Aluminum
Answer:
a. The conjugate base of an acidic buffer will accept hydrogen protons when a strong acid is added to the solution.
b. An acidic buffer solution is a mixture of a weak acid and its conjugate base.
e. The weak acid of an acidic buffer will donate hydrogen protons when a strong base is added to the solution.
Explanation:
<em>Which of the statements correctly describe the properties of a buffer?</em>
a. The conjugate base of an acidic buffer will accept hydrogen protons when a strong acid is added to the solution. TRUE. The conjugate base neutralizes the excess of hydrogen protons.
b. An acidic buffer solution is a mixture of a weak acid and its conjugate base. TRUE.
c. An acidic buffer solution is a mixture of a weak base and its conjugate acid. FALSE. This is a basic buffer solution.
d. The weak acid of an acidic buffer will accept hydrogen protons when a strong base is added to the solution. FALSE. The weak acid will react with the hydroxyl ions from the added base.
e. The weak acid of an acidic buffer will donate hydrogen protons when a strong base is added to the solution. TRUE. These hydrogen protons will form water.
f. The conjugate base of an acidic buffer will donate hydrogen protons when a strong acid is added to the solution. FALSE. It will accept hydrogen protons.
Searching "electron configuration of chromium on google images will easily provide you with the answer.
Answer:
A chemical reaction in which an uncombined element replaces an element that is part of a compound is called a simple substitution reaction or simple displacement reaction.
Explanation:
A simple substitution reaction or simple displacement reaction, called single-displacement reaction, is a reaction in which an element of a compound is substituted by another element involved in the reaction. The starting materials are always pure elements and an aqueous compound. And a new pure aqueous compound and a different pure element are generated as products. The general form of a simple substitution reaction is:
AB + C → A +BC
where C and A are pure elements; C replaces A within compound AB to form a new co, placed CB and elementary A.
So, in a Single replacement reaction an uncombined element replaces an element.
<u><em>A chemical reaction in which an uncombined element replaces an element that is part of a compound is called a simple substitution reaction or simple displacement reaction.</em></u>