The balloon would be smaller and not float as well because of the low temperature. The particles in the balloon when in the car will slow down and get closer together because of the low temperature. That caused it to become more dense and smaller in size then before. When in the store, the particulars in the balloon we’re moving faster and more spread apart
I might not be right but I think the empirical formula is NO2
Answer:
114 grams
Explanation:
3chlorines per compound*38grams=114
Answer:
- Last choice: <em><u>- 3.72°C</u></em>
Explanation:
The freezing point depression in a solvent is a colligative property: it depends on the number of solute particles.
The equation to predict the freezing point depression in a solvent is:
Where,
- ΔTf is the freezing point depression of the solvent,
- Kf is the cryoscopic molal constant of the solvent, and i is the Van'f Hoff factor, which is the number of ions produced by each unit formula of the ionic compound.
The calcualtions are in the attached pdf file. Please, open it by clicking on the image of the file.
Answer:
The molarity of a solution is 2.5 M
Explanation:
Molarity is a concentration unit that describes how much of a solution is dissolved in solution.
Molarity of a solution can found by using the formula,
Molarity (M) = (moles of solute)/(Liters of Solution).
Given, mass of Sodium = 114.95 grams.
Volume of water = 2 L.
Here, Sodium is solute as it is dissolved in water, which is the solvent.
Moles of Sodium(solute) can be found by using the formula,
Number of Moles = mass/Molecular weight.
mass of Sodium = 114.95 grams.
Molecular weight = 22.989 grams
Number of Moles of Sodium(solute) =114.95/22.989 = 5.
Substituting the values in the formula, we get,
M = 5/2 = 2.5 M