The organs of the digestive system such as the pancreas, liver, stomach, small intestine, and large intestine help in the digestion of food.
<h3>What are organs?</h3>
Organs are a collection of tissues that are closely related and which perform a related function.
The role and function of the organs of the digestive system are as follows:
- Pancreas - produces pancreatic juice which contain digestive enzymes
- Liver - produces bile for the emulsification of fat
- Stomach - serves as a temporary store of food and produces digestive juices
- Small intestine - functions in food digestion
- Large Intestine - helps to remove undigested food from the body
Therefore, the organs of the digestive system such as the pancreas, liver, stomach, small intestine, and large intestine help in the digestion of food.
Learn more about digestive system at: brainly.com/question/956634
#SPJ1
Answer : The rate of change of the total pressure of the vessel is, 10.5 torr/min.
Explanation : Given,
=21 torr/min
The balanced chemical reaction is,

The rate of disappearance of
= ![-\frac{1}{2}\frac{d[NO]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNO%5D%7D%7Bdt%7D)
The rate of disappearance of
= ![-\frac{d[Cl_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BCl_2%5D%7D%7Bdt%7D)
The rate of formation of
= ![\frac{1}{2}\frac{d[NOCl]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNOCl%5D%7D%7Bdt%7D)
As we know that,
=21 torr/min
So,
![-\frac{d[Cl_2]}{dt}=-\frac{1}{2}\frac{d[NO]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BCl_2%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNO%5D%7D%7Bdt%7D)
![\frac{d[Cl_2]}{dt}=\frac{1}{2}\times 21torr/min=10.5torr/min](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BCl_2%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ctimes%2021torr%2Fmin%3D10.5torr%2Fmin)
And,
![\frac{1}{2}\frac{d[NOCl]}{dt}=\frac{1}{2}\frac{d[NO]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNOCl%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNO%5D%7D)
![\frac{d[NOCl]}{dt}=\frac{d[NO]}=21torr/min](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BNOCl%5D%7D%7Bdt%7D%3D%5Cfrac%7Bd%5BNO%5D%7D%3D21torr%2Fmin)
Now we have to calculate the rate change.
Rate change = Reactant rate - Product rate
Rate change = (21 + 10.5) - 21 = 10.5 torr/min
Therefore, the rate of change of the total pressure of the vessel is, 10.5 torr/min.
You can consider the density
of the water. Thus, in order to properly measure the mass of a liquid, we can
first get the volume and density of the liquid material or substance.
We can firstly utilize the
formula to get the mass from deriving the set formula of density to mass:
Since density is mass over the
volume,
<span><span>
1. </span>D=m/v</span>
<span><span>
2. </span>We can transmute the formula to m = dv</span>
<span><span>3. </span>Mass is density times the volume</span>
Considering the ideal gas law, a sample weighing 9.49 g occupies 68.67 L at 353 K and 2.00 atm.
Ideal gases are a simplification of real gases that is done to study them more easily. It is considered to be formed by point particles, do not interact with each other and move randomly. It is also considered that the molecules of an ideal gas, in themselves, do not occupy any volume.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P× V = n× R× T
In this case, you know:
- P= 2 atm
- V= ?
- n=
being 2g/mole the molar mass of H2, that is, the amount of mass that a substance contains in one mole. - R= 0.082

- T= 353 K
Replacing:
2 atm× V = 4.745 moles× 0.082
× 353 K
Solving:
V = (4.745 moles× 0.082
× 353 K)÷ 2 atm
<u><em>V= 68.67 L</em></u>
Finally, a sample weighing 9.49 g occupies 68.67 L at 353 K and 2.00 atm.
Learn more: