Thank you for posting your question here at brainly. I would say yes to the above question. <span>Work done is the force applied multiplied by the distance travelled. </span><span>Wd = F x d. </span><span>So if d increases, Wd increases also. I hope the answer will help you. </span>
Answer:
Asthenosphere
Explanation:
The asthenosphere is a part of the upper mantle just below the lithosphere that is involved in plate tectonic movement and isostatic adjustments.
Answer: v = 0.6 m/s
Explanation: <u>Momentum</u> <u>Conservation</u> <u>Principle</u> states that for a collision between two objects in an isolated system, the total momentum of the objects before the collision is equal to the total momentum of the objects after the collision.
Momentum is calculated as Q = m.v
For the piñata problem:


Before the collision, the piñata is not moving, so
.
After the collision, the stick stops, so
.
Rearraging, we have:


Substituting:

0.6
Immediately after being cracked by the stick, the piñata has a swing speed of 0.6 m/s.
As I found out the choices for your question which are:
<span>A) F2 to F-
B) Cr2O7²- → Cr2+
C) O2 to H2O
D) HAsO2 to As
</span>
Unfortunately, the answer does not belong to the choices provided. In fact, it is the oxidation half-reaction that occurs at the anode of an electrode for it to transform chemical energy to consumable electrical energy.
Answer:
6.6 atm
Explanation:
Using the general gas law
P₁V₁/T₁ = P₂V₂/T₂
Let P₂ be the new pressure
So, P₂ = P₁V₁T₂/V₂T₁
Since V₂ = 2V₁ , P₁ = 12 atm and T₁ = 273 + t where t = temperature in Celsius
T₂ = 273 + 2t (since its Celsius temperature doubles).
Substituting these values into the equation for P₂, we have
P₂ = P₁V₁(273 + 2t)/2V₁(273 + t)
P₂ = 12(273 + 2t)/[2(273 + t)]
P₂ = 6(273 + 2t)/(273 + t)]
assume t = 30 °C on a comfortable spring day
P₂ = 6(273 + 2(30))/(273 + 30)]
P₂ = 6(273 + 60))/(273 + 30)]
P₂ = 6(333))/(303)]
P₂ = 6.6 atm