True it’s true because in the book it said all that stuff
As we know that KE and PE is same at a given position
so we will have as a function of position given as

also the PE is given as function of position as

now it is given that
KE = PE
now we will have




so the position is 0.707 times of amplitude when KE and PE will be same
Part b)
KE of SHO at x = A/3
we can use the formula

now to find the fraction of kinetic energy



now since total energy is sum of KE and PE
so fraction of PE at the same position will be


Answer:
71 rpm
Explanation:
Given that:
Angular momentum (L) = 0.26
Diameter = 25cm = 0.25 cm
Radius, r = (d/2) = 0.125m
Mass = 5.6 kg
Moment of inertia (I) = 2mr² / 5
I = (2 * 5.6 * 0.125^2) / 5
= 0.175
= 0.175 / 5
= 0.035 kgm²
Angular speed (w) ;
w = L / I
w = 0.26 / 0.035
= 7.4285714
= 7.429 rad/s
w = (7.429 * 60/2π)
w = 445.74 / 2π rpm
w = 70.941724
Angular speed = 70.94 rpm
= 71 rpm
Answer:
a . 0.35cm
b. 11.33cm
Explanation:
a. Given both currents are in the same direction, the null point lies in between them. Let x be distance of N from first wire, then distance from 2nd wire is 4-x
#For the magnetic fields to be zero,the fields of both wires should be equal and opposite.They are only opposite in between the wires:

Hence, for currents in same direction, the point is 0.35cm
b. Given both currents flow in opposite directions, the null point lies on the other side.
#For the magnetic fields to be zero,the fields of both wires should be equal and opposite.They are only opposite in outside the wires:
Let x be distance of N from first wire, then distance from 2nd wire is 4+x:

Hence, if currents are in opposite directions the point on x-axis is 11.33cm
Answer:
60000 J
Explanation:
Assuming the force is applied parallel to the displacement of the elephant, the work done to move it across the floor is

where
F = 2000 N is the force applied
d = 30 m is the displacement of the elephant
Substituting the numbers into the formula, we find
