Answer:
The options are not shown, so let's derive the relationship.
For an object that is at a height H above the ground, and is not moving, the potential energy will be:
U = m*g*H
where m is the mass of the object, and g is the gravitational acceleration.
Now, the kinetic energy of an object can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Now, when we drop the object, the potential energy begins to transform into kinetic energy, and by the conservation of the energy, by the moment that H is equal to zero (So the potential energy is zero) all the initial potential energy must now be converted into kinetic energy.
Uinitial = Kfinal.
m*g*H = (1/2)*m*v^2
v^2 = 2*g*H
v = √(2*g*H)
So we expressed the final velocity (the velocity at which the object impacts the ground) in terms of the height, H.
Answer:
<h2>121ohms</h2>
Explanation:
Formula used for calculating power P = current * voltage
P = IV
From ohms law, V = IR where R is the resistance. Substituting V = IR into the formula for calculating power, we will have;
P = IV
P =(V/R)V
P = V²/R
Given parameters
Power rating of the bulb P = 100 Watts
Source voltage V = 110V
Required
Resistance of the bulb R
Substituting the given parameters into the formula for calculating power to get Resistance R;
P = V²/R
100 = 110²/R
R = 110²/100
R = 110 * 110/100
R = 12100/100
R = 121 ohms
<em>Hence, the resistance of this bulb is 121 ohms</em>
Answer:
You can do the reverse unit conversion from cm/s to m/s, or enter any two units below: Metre per second (U.S. spelling: meter per second) is an SI derived unit of both speed (scalar) and velocity (vector quantity which specifies both magnitude and a specific direction), defined by distance in metres divided by time in seconds.
Explanation:
Answer:
upwards
downwards
Explanation:
Given:
weight of the person, 
So, the mass of the person:



- Now if the apparent weight in the elevator,

<u>Then the difference between the two weights is :</u>


is the force that acts on the body which generates the acceleration.
Now the corresponding acceleration:


upwards, because the normal reaction that due to the weight of the body is increased here.
- Now if the apparent weight in the elevator,

<u>Then the difference between the two weights is :</u>


is the force that acts on the body which generates the acceleration.
Now the corresponding acceleration:


downwards, because the normal reaction that due to the weight of the body is decreased here.
Answer:
D
Explanation:
D) The overall work done by gravity is zero
This statement is correct .
If m be the mass of each of the children and h be the height of tower
work done by gravity on the boys in going up = - mgh
it is so because force applied by gravity = mg downwards and displacement
is upwards
work done will be negative = - mgh
Work done by gravity on boys when they come down = + mgh because both force and displacement are downwards .
Hence total work done = - mgh + mgh = 0.
The children will have same kinetic energy as the inclined surface is friction-less so no energy will be dissipated hence addition of energy to boys in both the cases will be same.