Answer: is the benefit worth the cost?
Explanation: for those on edge :)
Answer: The given statement is TRUE.
Explanation:
An equilibrium reaction is one in which rate of forward reaction is equal to the rate of backward reaction.
Equilibrium constant is defined as the ratio of the product of the concentration of products to the product of the concentration of reactants each raised to their stochiometric coefficient.
For example for the given equilibrium reaction;

![K_{eq}=\frac{[H_2]^2[O_2]}{[H_2O]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BH_2%5D%5E2%5BO_2%5D%7D%7B%5BH_2O%5D%5E2%7D)
Thus the given statement that in calculating the equilibrium constant for a reaction, the coefficients of the chemical equation are used as exponents for the factors in the equilibrium expression is True.
Answer: Solution A : ![[H_3O^+]=0.300\times 10^{-7}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D0.300%5Ctimes%2010%5E%7B-7%7DM)
Solution B : ![[OH^-]=0.107\times 10^{-5}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.107%5Ctimes%2010%5E%7B-5%7DM)
Solution C : ![[OH^-]=0.177\times 10^{-10}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.177%5Ctimes%2010%5E%7B-10%7DM)
Explanation:
pH or pOH is the measure of acidity or alkalinity of a solution.
pH is calculated by taking negative logarithm of hydrogen ion concentration and pOH is calculated by taking negative logarithm of hydroxide ion concentration.

![[H_3O^+][OH^-]=10^{-14}](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%5BOH%5E-%5D%3D10%5E%7B-14%7D)
a. Solution A: ![[OH^-]=3.33\times 10^{-7}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D3.33%5Ctimes%2010%5E%7B-7%7DM)
![[H_3O^+]=\frac{10^{-14}}{3.33\times 10^{-7}}=0.300\times 10^{-7}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B3.33%5Ctimes%2010%5E%7B-7%7D%7D%3D0.300%5Ctimes%2010%5E%7B-7%7DM)
b. Solution B : ![[H_3O^+]=9.33\times 10^{-9}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D9.33%5Ctimes%2010%5E%7B-9%7DM)
![[OH^-]=\frac{10^{-14}}{9.33\times 10^{-9}}=0.107\times 10^{-5}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B9.33%5Ctimes%2010%5E%7B-9%7D%7D%3D0.107%5Ctimes%2010%5E%7B-5%7DM)
c. Solution C : ![[H_3O^+]=5.65\times 10^{-4}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D5.65%5Ctimes%2010%5E%7B-4%7DM)
![[OH^-]=\frac{10^{-14}}{5.65\times 10^{-4}}=0.177\times 10^{-10}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B5.65%5Ctimes%2010%5E%7B-4%7D%7D%3D0.177%5Ctimes%2010%5E%7B-10%7DM)
I believe that the answer is 12 because there is already 3 O molecules and since its in parentheses with 3 outside it that means that there are 3 of those CO molecules meaning that for every 1 CO there will be 3 O’s so 3, four times Is 12