<h2>
<em>Answer:</em></h2><h2>
<em>1</em><em>3</em><em>1</em><em>.</em><em>9</em><em>6</em><em>4</em><em> </em><em>cm</em></h2>
<em>Solution,</em>
<em>radius=</em><em>2</em><em>1</em><em> </em><em>cm</em>
<em>Circumference</em><em> </em><em>of </em><em>circle</em><em>=</em><em>2</em><em> </em><em>pi </em><em>r</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>2</em><em>*</em><em>3</em><em>.</em><em>1</em><em>4</em><em>2</em><em>*</em><em>2</em><em>1</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>1</em><em>3</em><em>1</em><em>.</em><em>9</em><em>6</em><em>4</em><em> </em><em>cm</em>
<em>hope </em><em>it</em><em> helps</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em>
Whenever you face the problem that deals with maxima or minima you should keep in mind that minima/maxima of a function is always a point where it's derivative is equal to zero.
To solve your problem we first need to find an equation of net benefits. Net benefits are expressed as a difference between total benefits and total cost. We can denote this function with B(y).
B(y)=b-c
B(y)=100y-18y²
Now that we have a net benefits function we need find it's derivate with respect to y.

Now we must find at which point this function is equal to zero.
0=100-36y
36y=100
y=2.8
Now that we know at which point our function reaches maxima we just plug that number back into our equation for net benefits and we get our answer.
B(2.8)=100(2.8)-18(2.8)²=138.88≈139.
One thing that always helps is to have your function graphed. It will give you a good insight into how your function behaves and allow you to identify minima/maxima points.
Answer:
USe Symbolab Calculator Trust me it really helps don't worry
Step-by-step explanation:
Answer:
Vertically opposite angles
186 because you would divide 341 by 11 and you get 31 then multiply that by 6 and you get 186. Did this help?