Previous results tell us the speed (v) is given in terms of the coefficient of friction (k) and the radius of the curve (r) as
v = √(kgr)
v = √(0.20·9.8 m/s²·50 m)
= 7√2 m/s ≈ 9.90 m/s
Answer:
by a rocking chair, a bouncing ball, a vibrating tuning fork, a swing in motion, the Earth in its orbit around the Sun, and a water wave.
Explanation:
Answer:
1.7323
Explanation:
To develop this problem, it is necessary to apply the concepts related to refractive indices and Snell's law.
From the data given we have to:



Where n means the index of refraction.
We need to calculate the index of refraction of the liquid, then applying Snell's law we have:



Replacing the values we have:


Therefore the refractive index for the liquid is 1.7323
Answer:
A because the bigger it is the the more force needs to act apond it
Explanation: