Explanation:
Draw a free body diagram for each disc.
Disc A has three forces acting on it: 86.5 N up, T₁ down, and Wa down.
∑F = ma
86.5 N − T₁ − Wa = 0
Wa = 86.5 N − T₁
ma × 9.8 m/s² = 86.5 N − 55.6 N
ma = 3.2 kg
Disc B has three forces acting on it: T₁ up, T₂ down, and Wb down.
∑F = ma
T₁ − T₂ − Wb = 0
Wb = T₁ − T₂
mb × 9.8 m/s² = 55.6 N − 36.5 N
mb = 1.9 kg
Disc C has three forces acting on it: T₂ up, T₃ down, and Wc down.
∑F = ma
T₂ − T₃ − Wc = 0
Wc = T₂ − T₃
mc × 9.8 m/s² = 36.5 N − 9.6 N
mc = 2.7 kg
Disc D has two forces acting on it: T₃ up and Wd down.
∑F = ma
T₃ − Wd = 0
Wd = T₃
md × 9.8 m/s² = 9.6 N
md = 0.98 kg
<h3><u>Answer;</u></h3>
100 times
<h3><u>Explanation;</u></h3>
- The largest stars are 100 times the mass of the Sun.
- <u>The giant stars are about 10 to 100 times the radius of the sun</u>, which means they are 100 times brighter than the sun.
- <em><u>The largest known star in terms of mass and brightness is known as the Pistol Star. It is believed to be 100 times as massive as our Sun, and 10,000,000 times as bright.</u></em>
Answer:
Chemical bonds
Explanation:
The chemical bonds hold the different type atoms or ions together.
The type of chemical bonds :
1. Ionic bond ;
Ions or atoms changes the electron and form ionic bond.Those atoms gains the electron gets negative charge and those atoms donate the electron gets positive charge.
2.Covalent bond :
In this type of bond atoms share the electrons and form covalent bonds.
3. Metallic bond :
This type of bond are present in the metals.In this atoms are used free electrons to form bonds.
Therefore answer is --
Chemical bonds
Answer:
a) (0, -33, 12)
b) area of the triangle : 17.55 units of area
Explanation:
<h2>
a) </h2>
We know that the cross product of linearly independent vectors and gives us a nonzero, orthogonal to both, vector. So, if we can find two linearly independent vectors on the plane through the points P, Q, and R, we can use the cross product to obtain the answer to point a.
Luckily for us, we know that vectors and are living in the plane through the points P, Q, and R, and are linearly independent.
We know that they are linearly independent, cause to have one, and only one, plane through points P Q and R, this points must be linearly independent (as the dimension of a plane subspace is 3).
If they weren't linearly independent, we will obtain vector zero as the result of the cross product.
So, for our problem:
<h2>B)</h2>
We know that and are two sides of the triangle, and we also know that we can use the magnitude of the cross product to find the area of the triangle:
so:
Answer:
835.29 Hz
Explanation:
When moving towards the source of sound, frequency will be given by
f*=f(vd+v)/v
Where f is the freqiency of the source, vd is the driving speed, v is the speed of sound in air, f* is the inkown frequency when moving forward.
Substituting 800 Hz for f, 340 m/s for v and 15 m/s for vd then
f*=800(15+340)/340=835.29411764704 Hz
Rounded off, the frequency is approximately 835.29 Hz