Answer:
118800 seconds
Explanation:
Given :
Voltage, V = 1.2 V
Resistance, R = 22 Ω
Applying Ohm's law, we get
Voltage, V = IR
Current 

I = 0.0545 A
Rate = 1800 mAh
Time taken, 
= 33 hr
= 118800 s
Assume that the shape of Virginia beach is rectangular.
Note that
1 km = 10³ m
1 cm = 10⁻² m
The area is
A = (15 km)*(50 km)
= (15 x 10³ m)*(50 x 10³ m)
= 7.5 x 10⁸ m²
Because 2 cm of rain fell, the volume is
V = (7.5 x 10⁸ m)*(2 x 10⁻² m) = 1.5 x 10⁶ m³
Answer: 1.5 x 10⁶ m³
The final vertical velocity of the skydiver at 50.8 m of fall is 31.56 m/s.
<h3>
Time of motion of the girl</h3>
The time of motion of the girl is calculated as follows;
h = vt + ¹/₂gt²
where;
- v is initial vertical velocity = 0
- t is time of motion
- g is acceleration due to gravity
Substitute the given parameters and solve for time of motion;
50.8 = 0 + ¹/₂(9.8)t²
2(50.8) = 9.8t²
101.6 = 9.8t²
t² = 101.6/9.8
t² = 10.367
t = √10.367
t = 3.22 seconds
<h3>Final vertical velocity of the skydiver</h3>
vf = vi + gt
where;
vi is the initial vertical velocity = 0
vf = 0 + 9.8(3.22)
vf = 31.56 m/s
Thus, the final vertical velocity of the skydiver at 50.8 m of fall is 31.56 m/s.
Learn more about vertical velocity here: brainly.com/question/24949996
#SPJ1
Answer:
C = 17 i^ - 7 j^ + 16 k^
, | C| = 24.37
Explanation:
To work the vactor component method, we add the sum in each axis
C = A + B = (Aₓ + Bₓ) i ^ + (
+
) i ^ + (
+
) k ^
Cₓ = 12+ 5 = 17
= -37 +30 = -7
= 58 -42 = 16
Resulting vector
C = 17 i ^ - 7j ^ + 16k ^
The mangitude of the vector is
| C | = √ c²
| C | = √( 17² + 7² + 16²)
| C| = 24.37
Answer:
Explanation:
Given
time taken 
Speed acquired in 2 sec 
Here initial velocity is zero 
acceleration is the rate of change of velocity in a given time


Distance travel in this time

where
s=displacement
u=initial velocity
a=acceleration
t=time


so Jet Plane travels a distance of 42 m in 2 s