Answer:
i) Distancia, ii) La cinta métrica es impracticable.
Explanation:
i) El concepto físico que se construye únicamente del punto de salida y el punto de llegada a la Luna es el concepto de desplazamiento, definido como la distancia en línea recta de un punto en el espacio con respecto a un punto de referencia (la Tierra en este caso).
La distancia puede involucrar trayectorias curvilíneas entre los puntos mencionados.
ii) Por último, el uso de una cinta métrica es impracticable debido a la cantidad de material a utilizar y los efectos gravitacionales, electromagnéticos y mecánicos que inducen a una deflexión o una ruptura de esa cinta debido a la magnitud de la distancia entre las superficies del planeta y el satélite, respectivamente.
En este caso, es mejor utilizar la medición con tecnología láser, basadas en el fenómeno del electromagnetismo.
Hey there,
Question : Which microbes can be Eukaryotic?
Answer : A, Bacteria
Hope this helps :D
<em>~Top♥</em>
Answer: The hottest star is Archenar( blue) and the coolest star is Betelgeuse
Explanation:
Objects emit radiation that depends exclusively on their temperature. At an ambient temperature, the radiation emitted by an object is in the infrared spectrum (we could only see it with a special camera). If we heat it we will see that it first turns red (whose state we call “red hot”) because it is the lowest and least energetic wavelength of all.
If we continue to heat it, the wavelength that it emits to one with more energy will continue to increase and we will see that it turns yellow and then white. This is a signal that is emitting at all frequencies (but mainly in blue).
If we continue to warm a body that is "white hot", it would emit in the ultraviolet spectrum, with what would become ... black! then we would not see it emits light in the visible spectrum (well, we would see a very faint bluish light corresponding to the tail of the distribution of the spectrum it emits, but the peak of that spectrum would be in the ultraviolet).
Answer:
This can be translated to:
"find the electrical charge of a body that has 1 million of particles".
First, it will depend on the charge of the particles.
If all the particles have 1 electron more than protons, we will have that the charge of each particle is q = -e = -1.6*10^-19 C
Then the total charge of the body will be:
Q = 1,000,000*-1.6*10^-19 C = -1.6*10^-13 C
If we have the inverse case, where we in each particle we have one more proton than the number of electrons, the total charge will be the opposite of the one of before (because the charge of a proton is equal in magnitude but different in sign than the charge of an electron)
Q = 1.6*10^-13 C
But commonly, we will have a spectrum with the particles, where some of them have a positive charge and some of them will have a negative charge, so we will have a probability of charge that is peaked at Q = 0, this means that, in average, the charge of the particles is canceled by the interaction between them.
Answer:
they help us allocate a particular place in case one needs to allocate or find a place or something