1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GREYUIT [131]
2 years ago
12

A firework is designed so that when it is fired directly upwards, it explodes and splits into three equal-massed parts at its pe

ak. Someone launches the firework directly upwards and measures the locations of two of the pieces of the firework. They find that one piece landed 2 meters to the left and another piece landed two meters behind them. Where did the third piece land? Assume that none of the three parts went further upward after the explosion.
Physics
1 answer:
Arturiano [62]2 years ago
4 0

Answer:

the third piece landed 2\,\sqrt{2}  meters in a direction 45 degrees from the observer's right towards the front

Explanation:

Due to conservation of momentum, the momentum of the third piece must add to the other two momenta in vector from to render zero  (initial momentum of the firework on a plane parallel to ground. Therefore the momentum components of the third piece must have a component to the right equal in magnitude to the momentum of the piece that traveled to the left, and a momentum component pointing to the front of the observer of equal magnitude to that of the piece that traveled behind the observer. Then the direction of the third momentum must be at 45 degrees from the observer's right towards the observer's front.

Also, the magnitude of a momentum vector of such components, is given by the Pythagorean theorem. Recall also that the magnitudes of the momentum vectors of the first two pieces must be equal since they traveled equal distances.

|P_3|=\sqrt{P_1^2+P_2^2} \\|P_3|=\sqrt{P^2+P^2}\\|P_3|=\sqrt{2P^2}\\|P_3|=P\sqrt{2}

Then the distance traveled by the third piece must also keep this proportionality:

D_3=\sqrt{2} \,\,D\\D_3=\sqrt{2} \,*\,2\,\,meters\\D_3=2\,\sqrt{2} \,\,meters

You might be interested in
Are photons causing the electrons to flow off of the target? ( the target is calcium)
Sliva [168]

Answer:

The energy lost by the atoms is given off as an electromagnetic wave. ... even if it's not very intense, will always cause electrons to be emitted.

Explanation:

5 0
3 years ago
Until a train is a safe distance from the station it must travel at 5 m/s. Once the train is on open track it can speed up
kirza4 [7]

Answer:

I believe the answer is b

Explanation:

5 0
3 years ago
g a small smetal sphere, carrying a net charge is held stationarry. what is the speed are 0.4 m apart
weeeeeb [17]

Complete Question

A small metal sphere, carrying a net charge q1=−2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q2= -8μC and mass 1.50g, is projected toward q1. When the two spheres are 0.80m apart, q2 is moving toward q1 with speed 20ms−1. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.The speed of q2 when the spheres are 0.400m apart is.

Answer:

The value v_2  =  4 \sqrt{10} \  m/s

Explanation:

From the question we are told that

   The  charge on the first sphere is  q_1  =  2\mu C  =  2*10^{-6} \  C

    The charge on the second sphere is  q_2 =  8 \mu C = 8*10^{-6} \  C

     The  mass of the second charge is m  =  1.50 \  g  =  1.50 *10^{-3} \ kg

      The  distance apart is  d =  0.4 \  m

      The  speed of the second  sphere is  v_1  =  20 \  ms^{-1}

Generally the total energy possessed by when q_2 and  q_1 are separated by 0.8 \  m is mathematically represented

     Q =  KE + U

Here KE   is  the kinetic energy which is mathematically represented as

     KE  =  \frac{1 }{2}  m (v_1)^2

substituting value

     KE  =  \frac{1 }{2}  * ( 1.50 *10^{-3}) (20 )^2

     KE  =  0.3 \  J

And  U is  the  potential  energy which is mathematically represented as

        U  =  \frac{k *  q_1 *  q_2  }{d }

substituting values

       U  =  \frac{9*10^9 *  2*10^{-6} * 8*10^{-6}  }{0.8 }

      U  =  0.18 \  J

So

       Q =  0.3 +  0.18

       Q =  0.48 \  J

Generally the total energy possessed by when q_2 and  q_1 are separated by 0.4 \  m is mathematically represented

         Q_f =  KE_f + U_f

Here KE_f is  the kinetic energy which is mathematically represented as

     KE_f  =  \frac{1 }{2}  m (v_2^2

substituting value

     KE_f  =  \frac{1 }{2}  * ( 1.50 *10^{-3}) (v_2 )^2

     KE_f  =  7.50 *10^{ -4} (v_2 )^2

And  U_f is  the  potential  energy which is mathematically represented as

        U_f  =  \frac{k *  q_1 *  q_2  }{d }

substituting values

       U_f  =  \frac{9*10^9 *  2*10^{-6} * 8*10^{-6}  }{0.4 }

      U_f  =  0.36 \  J

From the law of energy conservation

     Q =  Q_f

So

    0.48 =  0.36 +(7.50 *10^{-4} v_2^2)

   v_2  =  4 \sqrt{10} \  m/s

     

   

6 0
3 years ago
The sum of the kinetic and potential energies of a system of objects is conserved: Group of answer choices only when no external
uysha [10]

The sum of the kinetic and potential energies of a system of objects is conserved only when no external force acts on the objects.

<h3>Conservation of mechanical energy</h3>

The principle of conservation of mechanical energy states that the total mechanical energy of an isolated system (absence of external force) is always constant.

M.A = P.E + K.E

where;

P.E is potential energy

K.E is kinetic energy

Thus, the sum of the kinetic and potential energies of a system of objects is conserved only when no external force acts on the objects.

Learn more about conservation of mechanical energy here: brainly.com/question/24443465

7 0
2 years ago
A 244.0 N block is at rest on a flat, frictionless table. A hooked cable applies an upward force of 24.0 N on the block. What is
blagie [28]

Answer:

268N

Explanation:

The upward force acting on the block are the reaction and the hooked table..

The total normal force acting = normal reaction + 24N

Note that the normal reaction is always equal the weight of the table

Hence the normal force acting in the block is 244.0+24 = 268.0N

4 0
2 years ago
Other questions:
  • Which of the following best describes a completely elastic collision?
    7·1 answer
  • A woman lifts her 150 N child up one meter and carries her for a distance of 50 meters to the
    15·1 answer
  • The girl is using her arm to lift a weight. Her arm is acting as a _______.
    9·2 answers
  • Explain which planets have seasons and why some planets have none at all.
    11·1 answer
  • A driver of a car traveling at 15.0 m/s applies the brakes, causing a uniform acceleration of -2.0 m/s/s. How long does it take
    12·1 answer
  • HURRY!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    5·2 answers
  • HELP ASAP
    14·1 answer
  • What does the slope of a speed vs time graph means
    11·1 answer
  • Please help! Didn’t have right subject so i chose one that may be similar.
    15·2 answers
  • A 3.8 kg ball is rolling eastward across a horizontal,
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!