Statements
2. right triangle
3. PQ = OP
5. ∆ONP = ∆PQO
Reasons
1. Given
4. Given
5. SAS
<em><u>hope </u></em><em><u>this</u></em><em><u> answer</u></em><em><u> helps</u></em><em><u> you</u></em><em><u> dear</u></em><em><u> </u></em><em><u>take</u></em><em><u> care</u></em><em><u> </u></em><em><u>and </u></em><em><u>may</u></em><em><u> u</u></em><em><u> have</u></em><em><u> a</u></em><em><u> great</u></em><em><u> day</u></em><em><u> ahead</u></em><em><u>!</u></em>
Assuming the first 5 terms are:
n = 0
n = 1
n = 2
n = 3
n = 4
a) 4n + 4
4(0) + 4 = 4
4(1) + 4 = 8
4(2) + 4 = 12
4(3) + 4 = 16
4(4) + 4 = 20
b) 8n + 3
8(0) + 3 = 3
8(1) + 3 = 11
8(2) + 3 = 19
8(3) + 3 = 27
8(4) + 3 = 35
c) 18 - 3n
18 - 3(0) = 18
18 - 3(1) = 15
18 - 3(2) = 12
18 - 3(3) = 9
18 - 3(4) = 6
BajajajajajajajajajajajjajajajjjajajahHh
Answer:
The perimeter of rectangle is
Step-by-step explanation:
Let
x-----> the length of the rectangle
y----> the width of the rectangle
we know that
----> equation A
---> equation B (area of the constructed figure)
substitute the equation A in equation B
using a graphing calculator -----> solve the quadratic equation
The solution is
Find the value of x
Find the perimeter of rectangle