The miracle year for Albert Einstein was the year 1905 within which he published so many renowned papers.
<h3>When was Einstein miracle year?</h3>
The miracle year for Albert Einstein was the year 1905 within which he published so many renowned papers in a short time and became very popular.
His mindset in that year was one that challenged the orthodox explanations and sought to think outside the box.
Learn more about Albert Einstein:brainly.com/question/2964376
#SPJ1
Answer:
Energy
Kinetic
Energy in
this
Explanation:
ithikitsthatecauseireallydo
Newtons second law of motion: "T<span>he acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object."
kinetic energy is energy that an object posses while in motion and to get that it must have potential energy.</span>
Answer:
a. 13.7 s b. 6913.5 m
Explanation:
a. How much time before being directly overhead should the box be dropped?
Since the box falls under gravity we use the equation
y = ut - 1/2gt² where y = height of plane above ocean = 919 m, u = initial vertical velocity of airplane = 0 m/s, g = acceleration due to gravity = -9.8 m/s² and t = time it takes the airplane to be directly overhead.
So,
y = ut - 1/2gt²
y = 0 × t - 1/2gt²
y = 0 - 1/2gt²
y = - 1/2gt²
t² = -2y/g
t = √(-2y/g)
So, t = √(-2 × 919 m/-9.8 m/s²)
t = √(-1838 m/-9.8 m/s²)
t = √(187.551 m²/s²)
t = 13.69 s
t ≅ 13.7 s
So, the box should be dropped 13.69 s before being directly overhead.
b. What is the horizontal distance between the plane and the victims when the box is dropped?
The horizontal distance x between plane and victims, x = speed of plane × time it takes for box to drop = 505 m/s × 13.69 s = 6913.45 m ≅ 6913.5 m