1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
notsponge [240]
3 years ago
10

A ray of laser light travels through air and enters an unknown material. The laser enters the material at an angle of 36 degrees

to the normal. The refracted angle is 27.5 degrees. If the index of refraction of air is n = 1.00, what is the index of refraction of the unknown material?
Physics
1 answer:
V125BC [204]3 years ago
3 0

Answer:1.27

Explanation:

Given

incident angle i=36^{\circ}

refracted angle r=27.5^{\circ}

Suppose n_2 is the refractive index of material then using Snell's law we  can write

n_1\sin i=n_2\sin r

where n_1=refractive index of air

1\times \sin (36)=n_2\times \sin (27.5)

n_2=\dfrac{0.5877}{0.4617}

n_2=1.27

You might be interested in
An incompressible fluid (water) is flowing through a pipe of diameter 20 cm with
sergey [27]

Answer:

115 kPa

Explanation:

Use Bernoulli equation:

P₁ + ½ ρ v₁² + ρgh₁ = P₂ + ½ ρ v₂² + ρgh₂

Assuming no elevation change, h₁ = h₂.

P₁ + ½ ρ v₁² = P₂ + ½ ρ v₂²

Plugging in values:

(582,000 Pa) + ½ (1000 kg/m³) (1.28 m/s)² = P + ½ (1000 kg/m³) (30.6 m/s)²

P = 115,000 Pa

P = 115 kPa

3 0
3 years ago
1. Which is an advantage of coal energy?​
pentagon [3]
Coals energy is affordable and it is easy to burn.
4 0
2 years ago
Read 2 more answers
What is the hardest fruit to open??
Airida [17]

Answer:

pizza

Explanation:

3 0
2 years ago
Read 2 more answers
The drawing shows a large cube (mass = 21.0 kg) being accelerated across a horizontal frictionless surface by a horizontal force
MaRussiya [10]

Answer:

The blocks must be pushed with a force higher than 359 Newtons horizontally in order to accomplish this friction levitation feat.

Explanation:

The first step in resolving any physics problem is to draw the given scenario (if possible), see the attached image to have an idea of the objects and forces involved.

The large cube in red is being pushed from the left by a force \vec{P} whose value is to be found. That cube has its own weight \vec{w}_1=m_1\vec{g}, and it is associated with the force of gravity which points downward. Newton's third law stipulates that the response from the floor is an upward pointing force on the cube, and it's called the normal force \vec{N}_1.

A second cube is being pushed by the first, and since the force \vec{P} is strong enough it is able to keep such block suspended as if it were glued to the first one, due to friction. As in the larger cube, the smaller one has a weight \vec{w}_2=m_2\vec{g} pointing downwards, but the normal force in this block doesn't point upwards since its 'floor' isn't below it, but in its side, therefore the normal force directs it to the right as it is shown in the picture. Normal forces are perpendicular to the surface they contact. The final force is the friction between both cubes, that sets a resistance of one moving parallel the other. In this case, the weight of the block its the force pointing parallel to the contact surface, so the friction opposes that force, and thus points upwards. Friction forces can be set as Fr=\mu~N, where \mu is the coefficient of static friction between the cubes.

Now that all forces involved are identified, the following step is to apply Newton's second law and add all the forces for each block that point in the same line, and set it as equal its mass multiplied by its acceleration. The condition over the smaller box is the relevant one so its the first one to be analyzed.

In the vertical component: \Sigma F^2_y=Fr-w_2=m_2 a_y Since the idea is that it doesn't slips downwards, the vertical acceleration should be set to zero a_y=0, and making explicit the other forces: \mu N_2-m_2g=0\quad\Rightarrow (0.710)N_2-(4.5)(10)=0\quad\Rightarrow N_2=(4.5)(10)/(0.710)\approx 63.38 [N]. In the last equation gravity's acceleration was rounded to 10 [m/s^2].

In its horizontal component: \Sigma F^2_x=N_2=m_2 a_x, this time the horizontal acceleration is not zero, because it is constantly being pushed. However, the value of the normal force and the mass of the block are known, so its horizontal acceleration can be determined: 63.38=(4.5) a_x \quad \Rightarrow a_x=(63.38)/(4.5)\approx 14.08 [m/s^2]. Notice that this acceleration is higher than the one of gravity, and it is understandable since you should be able to push it harder than gravity in order for it to not slip.

Now the attention is switched to the larger cube. The vertical forces are not relevant here, since the normal force balances its weight so that there isn't vertical acceleration. The unknown force comes up in the horizontal forces analysis: \Sigma F_x=P=m a_x, since the force \vec{P} is not only pushing the first block but both, the mass involved in this equation is the combined masses of the blocks, the acceleration is the same for both blocks since they move together; P=(21.0+4.5) 14.08\approx 359.04 [N]. The resulting force is quite high but not impossible to make by a human being, this indicates that this feat of friction suspension is difficult but feasable.

4 0
3 years ago
Study the position-time graph for a bicycle. Which statement is supported by the graph? Position vs Time O The bicycle has speed
lesantik [10]

Answer:

D) The bicycle is not in motion.

Explanation:

Study the position-time graph for a bicycle.

Which statement is supported by the graph?

A) The bicycle has speed but not velocity.

B) The bicycle is moving at a constant velocity.

C) The bicycle has a displacement of 3 m.

D) The bicycle is not in motion.

Solution:

Velocity is the time rate of change of displacement. It is the ratio of displacement to time taken.

Speed is the time rate of change of distance. It is the ratio of distance to time taken.

From the position-time graph, we can see that the bicycle has a constant positon of 3 m for the whole of the time. That is the position remains 3 m even as the time changes. Therefore, we can conclude that the bicycle is not in motion.

6 0
3 years ago
Other questions:
  • The woman was standing on a cliff 30 meters above where she landed. There was a safety fence 4 meters from the cliff edge that w
    15·1 answer
  • A ferris wheel is 35 meters in diameter and boarded from a platform that is 2 meters above the ground. The six o'clock position
    15·2 answers
  • Whats the origin of all stars?<br> a) supernova<br> b) dwarfs<br> c) protostars<br> d) nebulae
    7·2 answers
  • TRUE or FALSE:
    6·2 answers
  • PLEASE HELP!
    15·2 answers
  • (AKS 1a) In 1996 Eddie Cheever recorded the fastest lap ever at the Indianapolis 500. His car completed one lap (4023 meters) in
    14·1 answer
  • The atom in the diagram has a neutral charge how many protons does it have
    15·1 answer
  • 1.) There was an earthquake in Salt Lake City, Utah, on March 18, 2020, in the morning at  9 hours, 9 minutes, and 45 seconds Mo
    7·1 answer
  • What's being transferred between a cell phone and a cell phone tower through radio waves?
    12·1 answer
  • 100 points right here first comr first serve. amos thejonah2016.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!