In order to balance the stick on the pivot, the total "moments" must be equal on both sides. A "moment" is (a weight) x (its distance from the center).
for the 5N weight: Moment = (5N) x (3 cm) = 15 N-cm
for the 12N weight: Moment = (12N) x (5 cm) = 60 N-cm
Sum of the moments trying to pull the stick down on that side = 75 N-cm
Whatever we hang on the other side has to provide a moment of 75 N-cm in the other direction. We have a 25N weight. Where should we hang it ?
(25N) x (distance from the pivot) = 75 N-cm
Distance from the pivot = (75 N-cm) / (25 N)
<em>Distance from the pivot = 3 cm </em>
<h2>
Answer:7.14
,4.125
</h2>
Explanation:
Whenever an object is moving in a 2D frame,its motion can be analysed as if it is travelling in two independent 1D frames.
One of such independent 1D frames are along horizontal and another along vertical.
Let
be the total velocity.
Given that,
We call the horizontal velocity as
and the vertical velocity as
.
=

where
is the angle between the object and horizontal.
It is given that 


Answer: D
Height of marble from ground
Explanation:
From the formula of kinetic energy and potential energy,
K.E = 1/2mv^2
While
P.E = mgh
From all the parameters given from the question. You can see that mass is constant, acceleration due to gravity is also constant.
Independent variable must be a value that can varies.
Since Jack rolled a marble down a ramp and recorded the potential energy and kinetic energy of the marble at different positions on the ramp to see the effects on both energies.
This different position must be the height which will produce an effect on the potential and kinetic energy of the marble.
Independent variable always provides an effect for dependent variable. Which are kinetic energy and potential energy in this case.
Height of marble from ground is the right answer.
Answer:
Explanation:
As it moves along, the paper is given a strong negative electrical charge by another corona wire. When the paper moves near the drum, its negative charge attracts the positively charged toner particles away from the drum.