The equation for determining the kinetic energy of the system is,
KE = 0.5mv²
where m is the mass, v is velocity and KE is the kinetic energy. When both objects have the same mass, and velocity but different direction, they will have the same kinetic energy.
This is because the exponent in the velocity is squared cancelling out the effect of the sign appearing before the number.
Explanation:
Efficiency is the ratio of energy out to energy in.
e = Eout / Ein
0.52 = 800 J / Ein
Ein ≈ 1538 J
Round as needed.
The magnitude of the second charge given that the first is –6×10¯⁶ C and is located 0.05 m away is +3.0×10¯⁶ C
<h3>Coulomb's law equation </h3>
F = Kq₁q₂ / r²
Where
- F is the force of attraction
- K is the electrical constant
- q₁ and q₂ are two point charges
- r is the distance apart
<h3>How to determine the second charge </h3>
- Charge 1 (q₁) = –6×10¯⁶ C
- Electric constant (K) = 9×10⁹ Nm²/C²
- Distance apart (r) = 0.05 m
- Force (F) = 65 N
F = Kq₁q₂ / r²
Cross multiply
Fr² = Kq₁q₂
Divide both side by Kq₁
q₂ = Fr² / Kq₁
q₂ = (65 × 0.05²) / (9×10⁹ × 6×10¯⁶)
q₂ = +3.0×10¯⁶ C (since the force is attractive)
Learn more about Coulomb's law:
brainly.com/question/506926
Answer:
3. 1.8A
Explanation:
Given the following data;
Quantity of charge, Q = 650C
Time = 6 minutes to seconds = 6 * 60 = 360 seconds.
To find the current l;
Quantity of charge = current * time
Substituting into the equation, we have;
650 = current * 360
Current = 650/360
Current = 1.8 Amperes
Answer:
As for the definitions, the tendency of two or more different molecules to bond with each other is known as Adhesion, whereas the force of attraction between the same molecules is known as Cohesion.
hopefully this helps