Answer:
1- For the track B. The potential energy is the same for the two cars, but because of the slope of the track, the car B earn kinetic energy faster. The gravitation acceleration of the cars will be g•sinθ, and the angle of the track B will have a bigger value for sinθ
2- The conservation of energy applies because the roller coaster is a closed track. When a car climb the track, it earn GPE, which is given by mgh, when it get down in the track, it transform GPE in KE, which is given in 1/2mv².
3-
Position of car (m) GPE KE GPE + KE
top (30m) 60000 0 60000
bottom (0m) 0 60000 60000
halfway down (15m) 30000 30000 60000
three-quarters way down 15000 45000 60000
0.4823 m/s
The initial velocity u1 of the ball=0
From the law of conservation of linear momentum.
m1u1+m2u2=m1v1+m2v2
(160×0)+(170×u1)=(160×0.3)+(170×0.2)
u1=0.4823m/s
Answer:
2.1 × 10⁻⁵ T
Explanation:
Given:
Inner radius, r = 4 mm = 0.004 m
Outer radius, R = 25 mm = 0.025 m
Current, I = 4 A
Distance of the point from the center, a = 17 mm = 0.017 m
μ₀ = 4π × 10⁻⁷ T·m/A
Now,
For the hollow cylinder magnetic field (B) is given as:
on substituting the respective values, we get
or
B = 2.1 × 10⁻⁵ T
This would be a funny game.
Inertia, according to first Law of Newton, means that when you throw a ball it will continue moving unless a force acts over it.
Without inertia, the ball instead of continue moving, would stop as soon as it leaves your hand or foot. You had to stay pasted to the ball unitl it reaches the desired destiny for it continue moving.
Answer:
<em>A very high metabolism and a very small size.</em>
<em></em>
Explanation:
The pygmy shrew is a very small mammal, that forages day and night. The metabolism of the Pygmy shrew is so high that it must eat at least every 30 minutes or it might die. The best explanation for what happens to the food's mass and energy is that most of the food mass is rapidly used fro building up of the shrew due to its very high metabolism, and a bigger portion of the food is lost from the surface of the body of the shrew, due to its very small size. The combination of these two factors; a very high metabolism (rapidly uses up food material, and generates a large amount of heat in a very short time) and the very small size (makes heat loss due to surface area to volume ratio high) explains what happens to the food mass and energy.