Answer:
Emechanical=mgh+
mν²
Explanation:
The equation for the total mechanical energy is:
Emechanical=Epotential+Ekinetic
In which,
Epotential=mgh; m: mass of the body, g: gravity; h: height
Ekinetic=
mν²; m: mass of the body, ν: velocity of the body
So,
Emechanical=mgh+
mν²
The force on a charged particle in a magnetic field is given by
the speed of the charged particle = 10842 m/s.
Explanation:
F= q V B sinθ
F=force=3.5 x 10⁻²N
q= charge= 8.4 x 10⁻⁴ C
B= magnetic field= 6.7 x 10⁻³ T
θ=35⁰
Thus the velocity is given by V=
V=(3.5 x 10⁻²)/[(8.4 x 10⁻⁴)(6.7 x 10⁻³)(sin35)]
V=10842 m/s
When work is done and a force is transferred an object must move
Answer:
The workdone is
Explanation:
From the question we are told that
The potential difference is 
Generally the charge on
is 
Generally the workdone is mathematically represented as

=>
=>
The wavelength

of the wave is 160 m, and this is the distance between two consecutive crests. The boat is located at a crest of the wave, this means that the first trough is located 80 meters from the boat (because the distance between a crest and a trough is half the wavelength).
The speed of the wave is

so the time the boat takes to reach the first trough is