Answer:
109
Step-by-step explanation:
99+10=109
Answer:
1. ∠1 = 120°
2. ∠2 = 60°
3. ∠3 = 60°
4. ∠4 = 60°
5. ∠5 = 75°
6. ∠6 = 45°
Step-by-step explanation:
From the diagram, we have;
1. ∠1 and the 120° angle are corresponding angles
Corresponding angles are equal, therefore;
∠1 = 120°
2. ∠2 and the 120° angle are angles on a straight line, therefore they are supplementary angles such that we have;
∠2 + 120° = 180°
∠2 = 180° - 120° = 60°
∠2 = 60°
3. Angle ∠3 and ∠2 are vertically opposite angles
Vertically opposite angles are equal, therefore, we get;
∠3 = ∠2 = 60°
∠3 = 60°
4. Angle ∠1 and angle ∠4 an=re supplementary angles, therefore, we get;
∠1 + ∠4 = 180°
∠4 = 180° - ∠1
We have, ∠1 = 120°
∴ ∠4 = 180° - 120° = 60°
∠4 = 60°
5. let the 'x' and 'y' represent the two angles opposite angles to ∠5 and ∠6
Given that the two angles opposite angles to ∠5 and ∠6 are equal, we have;
x = y
The two angles opposite angles to ∠5 and ∠6 and the given right angle are same side interior angles and are therefore supplementary angles
∴ x + y + 90° = 180°
From x = y, we get;
y + y + 90° = 180°
2·y = 180° - 90° = 90°
y = 90°/2 = 45°
y = 45°
Therefore, we have;
∠4 + ∠5 + y = 180° (Angle sum property of a triangle)
∴ ∠5 = 180 - ∠4 - y
∠5 = 180° - 60° - 45° = 75°
∠5 = 75°
6. ∠6 and y are alternate angles, therefore;
∠6 = y = 45°
∠6 = 45°.
Given:
The amount of profit, y, made by the company, is related to the selling price of each widget, x, by the given equation

To find:
The maximum amount of profit the company can make, to the nearest dollar.
Solution:
If a quadratic equation is
, then the vertex is

If a>0, then vertex is the minimum point and if a<0, then the vertex is the maximum point.
We have,

Here,
. Clearly, a<0. So, the vertex is the point of maxima.



Putting x=23.931 in the given equation, we get



The vertex is at (23.931,6568.138).
Therefore, the maximum profit is $6568.138 when x=23.931.
Answer:
1
Use the quadratic formula
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.
2
+
5
−
2
=
0
x^{2}+5x-2=0
x2+5x−2=0
=
1
a={\color{#c92786}{1}}
a=1
=
5
b={\color{#e8710a}{5}}
b=5
=
−
2
c={\color{#129eaf}{-2}}
c=−2
=
−
5
±
5
2
−
4
⋅
1
(
−
2
)
√
2
⋅
1
Step-by-step explanation:
this should help
I can use a chart by numbers them on the chart because I think 4 should be after the 3