1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ddd [48]
3 years ago
14

A wheel with radius 36 cm is rotating at a rate of 19 rev/s.(a) What is the angular speed in radians per second? rad/s(b) In a t

ime interval of 5 s, what is the angle in radians through which the wheel rotates? rad(c) At t=10 s the angular speed begins to increase at a rate of 1.6 rad/s/s. At t=15 s, what is the angular speed in radians per second? rad/s(d) Through what angle in radians did the wheel rotate during the time between t=10 s and t=15 s? rad(e) If the wheel rolls along the ground without slipping, the instantaneous velocity of the atoms of the object that are momentarily in contact with the ground is zero. This zero-velocity condition implies that vCM=ω⁢R, where ω is the angular speed of the object, since the instantaneous speed of the contact point is vCM-ω⁢R. During the time between t=10 s and t=15 s, how far did the center of the wheel move, in meters? m
Physics
1 answer:
Sedaia [141]3 years ago
8 0

(a) 119.3 rad/s

The angular speed of the wheel is

\omega= 19 rev/s

we need to convert it into radiands per second. We know that

1 rev = 2 \pi rad

Therefore, we just need to multiply the angular speed of the wheel by this factor, to get the angular speed in rad/s:

\omega = 19 rev/s \cdot (2\pi rad/rev))=119.3 rad/s

(b) 596.5 rad

The angular displacement of the wheel in a time interval t is given by

\theta= \omega t

where

\omega=119.3 rad

and

t = 5 s is the time interval

Substituting numbers into the equation, we find

\theta=(119.3 rad/s)(5 s)=596.5 rad

(c) 127.3 rad/s

At t=10 s, the angular speed begins to increase with an angular acceleration of

\alpha = 1.6 rad/s^2

So the final angular speed will be given by

\omega_f = \omega_i + \alpha \Delta t

where

\omega_i = 119.3 rad/s is the initial angular speed

\alpha = 1.6 rad/s^2 is the angular acceleration

\Delta t = 15 s - 10 s = 5 s is the time interval

Solving the equation,

\omega_f = (119.3 rad/s) + (1.6 rad/s^2)(5 s)=127.3 rad/s

(d) 616.5 rad

The angle through which the wheel has rotated during this time interval is given by

\theta = \omega_i \Delta t + \frac{1}{2} \alpha (\Delta t)^2

Substituting the numbers into the equation, we find

\theta = (119.3 rad/s)(5 s) + \frac{1}{2} (1.6 rad/s^2) (5 s)^2=616.5 rad

(e) 222 m

The instantaneous speed of the center of the wheel is given by

v_{CM} = \omega R (1)

where

\omega is the average angular velocity of the wheel during the time t=10 s and t=15 s, and it is given by

\omega=\frac{\omega_i + \omega_f}{2}=\frac{127.3 rad/s+119.3 rad/s}{2}=123.3 rad/s

and

R = 36 cm = 0.36 m is the radius of the wheel

Substituting into (1),

v_{CM}=(123.3 rad/s)(0.36 m)=44.4 m/s

And so the displacement of the center of the wheel will be

d=v_{CM} t = (44.4 m/s)(5 s)=222 m

You might be interested in
A 29.0 kg beam is attached to a wall with a hi.nge while its far end is supported by a cable such that the beam is horizontal.
castortr0y [4]

The vertical component of force exerted by the hi.nge on the beam will be,142.10N.

To find the answer, we need to know more about the tension.

<h3>How to find the vertical component of the force exerted by the hi.nge on the beam?</h3>
  • Let's draw the free body diagram of the system.
  • To find the vertical component of the force exerted by the hi.nge on the beam, we have to balance the total vertical force to zero.

                      F_V+T sin\alpha -mg=0\\F_V=mg-Tsin\alpha \\

  • To find the answer, we have to find the tension,

                     Tlsin\alpha - mg\frac{l}{2}sin\beta =0\\ \\Tlsin\alpha = mg\frac{l}{2}sin\beta\\\\Tsin57=\frac{mg}{2}sin90\\\\T=\frac{mg}{2sin57} =169.43N

  • Thus, the vertical component of the force exerted by the hi.nge on the beam will be,

                F_V=(29*9.8)-(169.43*sin57)=142.10N

Thus, we can conclude that, the vertical component of force exerted by the hi.nge on the beam will be,142.10N.

Learn more about the tension here:

brainly.com/question/28106868

#SPJ1

5 0
2 years ago
Read 2 more answers
suppose a car manufacturer tested its cars for front end collsion by hauling them up on a crane and dropping them from a certain
IRINA_888 [86]

Initial height: 66.5 m

Explanation:

The problem can be solved by using the principle of conservation of energy.

If we neglect air resistance, the total mechanical energy of the car is conserved during the fall, therefore we can write:

K_i + U_i = K_f + U_f

where :

K_i = 0 is the kinetic energy of the car at the top (it starts from rest)

U_i = mgh is the gravitational potential energy of the car at the top, with:

m = the mass of the car

g = the acceleration of gravity

h = the heigth of the car

K_f = \frac{1}{2}mv^2 is the kinetic energy of the car just before hitting the ground, with

v = 130 km/h final speed of the car

U_f = 0 is the gravitational potential energy of the car at the bottom

Re-arranging the equation,  we find

mgh=\frac{1}{2}mv^2

and we have:

g=9.8 m/s^2\\v = 130 km/h = 36.1 m/s

Solving for h, we find the initial height of the car:

h=\frac{v^2}{2g}=\frac{36.1^2}{2(9.8)}=66.5 m

Learn more about kinetic energy and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647  

brainly.com/question/10770261  

#LearnwithBrainly

5 0
3 years ago
Explain the relationship between the current output of the power supply and the current through each component in the parallel c
baherus [9]

Explanation:

Current output at the battery will be current of entire circuit, while the current through each bulb in the parallel circuit is the total current circuit.

So, current output through power supply is i and current through each component be i_1, i_2 , i_3 considering only three component.

Then in a parallel circuit

i = i_1+i_2+i_3

4 0
3 years ago
Question 4 of 10 A student measures the time it takes for two reactions to be completed. Reaction A is completed in 39 seconds,
Delicious77 [7]
I think the answer is d but I’m not sure
6 0
3 years ago
When an electric stove element is hot enough, it gives off a dull red glow. When it cools to the point that it no longer glows,
DochEvi [55]

Answer:

It will have a longer wavelength

Explanation:

When an electric stove is hot and gives dull red glow. a part of the energy dissipated is emitted as visible light and part as infrared radiation in the form of heat. When the stove cools down, and no longer glows all the energy is now in the form of infrared radiation.In the electromagnetic spectrum infrared rays have a higher wavelength than visible light. Hence for the reason the radiation will have a higher wavelength since visible light is cut off.

4 0
3 years ago
Other questions:
  • How do you think scientists figure out what they think the population will be in 2050?
    7·1 answer
  • 1. Say whether the following statements are true or false and explain why:
    9·1 answer
  • Joel has a mass of 50kg he is spending his firs day on skis. His friend is trying to push him across a level patch of snow. Joel
    5·1 answer
  • List and explain briefly similarities and differences between the electric force between two charges and the gravitational force
    14·1 answer
  • What would the force be if the separation between the two charges in the top window was adjusted to 8.19 ✕10-11 m? (The animatio
    6·1 answer
  • If the temperature is held constant during this process and the final pressure is 683 torrtorr , what is the volume of the bulb
    15·1 answer
  • Match the given equation with the verbal description of the surface: A. Circular Cylinder B. Plane C. Cone D. Half plane E. Sphe
    8·1 answer
  • What is a molecule?
    15·2 answers
  • A satellite in orbit around the Earth has a speed of 8 km/s at a given point of its orbit. If the period is 2 h, what is the alt
    14·1 answer
  • A block of wood has density 0.500 g/cm3 and mass 2 000 g. It floats in a container of oil (the oil's density is 0.750 g/cm3). Wh
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!