(a) 119.3 rad/s
The angular speed of the wheel is
![\omega= 19 rev/s](https://tex.z-dn.net/?f=%5Comega%3D%2019%20rev%2Fs)
we need to convert it into radiands per second. We know that
![1 rev = 2 \pi rad](https://tex.z-dn.net/?f=1%20rev%20%3D%202%20%5Cpi%20rad)
Therefore, we just need to multiply the angular speed of the wheel by this factor, to get the angular speed in rad/s:
![\omega = 19 rev/s \cdot (2\pi rad/rev))=119.3 rad/s](https://tex.z-dn.net/?f=%5Comega%20%3D%2019%20rev%2Fs%20%5Ccdot%20%282%5Cpi%20rad%2Frev%29%29%3D119.3%20rad%2Fs)
(b) 596.5 rad
The angular displacement of the wheel in a time interval t is given by
![\theta= \omega t](https://tex.z-dn.net/?f=%5Ctheta%3D%20%5Comega%20t)
where
![\omega=119.3 rad](https://tex.z-dn.net/?f=%5Comega%3D119.3%20rad)
and
t = 5 s is the time interval
Substituting numbers into the equation, we find
![\theta=(119.3 rad/s)(5 s)=596.5 rad](https://tex.z-dn.net/?f=%5Ctheta%3D%28119.3%20rad%2Fs%29%285%20s%29%3D596.5%20rad)
(c) 127.3 rad/s
At t=10 s, the angular speed begins to increase with an angular acceleration of
![\alpha = 1.6 rad/s^2](https://tex.z-dn.net/?f=%5Calpha%20%3D%201.6%20rad%2Fs%5E2)
So the final angular speed will be given by
![\omega_f = \omega_i + \alpha \Delta t](https://tex.z-dn.net/?f=%5Comega_f%20%3D%20%5Comega_i%20%2B%20%5Calpha%20%5CDelta%20t)
where
is the initial angular speed
is the angular acceleration
is the time interval
Solving the equation,
![\omega_f = (119.3 rad/s) + (1.6 rad/s^2)(5 s)=127.3 rad/s](https://tex.z-dn.net/?f=%5Comega_f%20%3D%20%28119.3%20rad%2Fs%29%20%2B%20%281.6%20rad%2Fs%5E2%29%285%20s%29%3D127.3%20rad%2Fs)
(d) 616.5 rad
The angle through which the wheel has rotated during this time interval is given by
![\theta = \omega_i \Delta t + \frac{1}{2} \alpha (\Delta t)^2](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%5Comega_i%20%5CDelta%20t%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%5Calpha%20%28%5CDelta%20t%29%5E2)
Substituting the numbers into the equation, we find
![\theta = (119.3 rad/s)(5 s) + \frac{1}{2} (1.6 rad/s^2) (5 s)^2=616.5 rad](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%28119.3%20rad%2Fs%29%285%20s%29%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%281.6%20rad%2Fs%5E2%29%20%285%20s%29%5E2%3D616.5%20rad)
(e) 222 m
The instantaneous speed of the center of the wheel is given by
(1)
where
is the average angular velocity of the wheel during the time t=10 s and t=15 s, and it is given by
![\omega=\frac{\omega_i + \omega_f}{2}=\frac{127.3 rad/s+119.3 rad/s}{2}=123.3 rad/s](https://tex.z-dn.net/?f=%5Comega%3D%5Cfrac%7B%5Comega_i%20%2B%20%5Comega_f%7D%7B2%7D%3D%5Cfrac%7B127.3%20rad%2Fs%2B119.3%20rad%2Fs%7D%7B2%7D%3D123.3%20rad%2Fs)
and
R = 36 cm = 0.36 m is the radius of the wheel
Substituting into (1),
![v_{CM}=(123.3 rad/s)(0.36 m)=44.4 m/s](https://tex.z-dn.net/?f=v_%7BCM%7D%3D%28123.3%20rad%2Fs%29%280.36%20m%29%3D44.4%20m%2Fs)
And so the displacement of the center of the wheel will be
![d=v_{CM} t = (44.4 m/s)(5 s)=222 m](https://tex.z-dn.net/?f=d%3Dv_%7BCM%7D%20t%20%3D%20%2844.4%20m%2Fs%29%285%20s%29%3D222%20m)