1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergio [31]
3 years ago
12

Can you please help me with #9?

Physics
1 answer:
IRINA_888 [86]3 years ago
3 0
The answer is 1 m/s. :::))))
You might be interested in
g An astronaut must journey to a distant planet, which is 189 light-years from Earth. What speed will be necessary if the astron
Butoxors [25]

Answer:

The value is v  =  2.999 *10^{8} \  m/s

Explanation:

From the question we are told that

   The time taken to travel to the planet from earth is t = 189 \ light-years

    The  time to be spent on the ship is  t_{s} =  12 \  years

Generally speed can be obtained using the mathematical relation represented below

       t_s  =  2 * t *  \sqrt{1 -  \frac{v^2}{c^2 } }

The 2 in the equation show that the trip is a round trip i.e going and coming back

=>    12 =  2 * 189 *  \sqrt{1 -  \frac{v^2}{(3.0*10^{8})^2 } }

=>     v  =  2.999 *10^{8} \  m/s

5 0
3 years ago
A 500 kg motorcycle accelerates at a rate of 2 m/s .how much force was applied to the motorcycle?
Aleksandr [31]

Answer:

by using formula F=ma which is m stand for mass a stand for acceleration. so 500kg × 2 ms^-2

8 0
3 years ago
Read 2 more answers
A beam of light has a wavelength of 4.5 x10^-7 meter in a vacuum. the frequency of this light is
valkas [14]
The basic relationship between frequency and wavelength for light (which is an electromagnetic wave) is
c= f \lambda
where c is the speed of light, f the frequency and \lambda the wavelength of the wave. 
Using \lambda=4.5 \cdot 10^{-7} m and c=3 \cdot 10^8 m/s, we can find the value of the frequency:
f= \frac{c}{\lambda}= \frac{3 \cdot 10^8 m/s}{4.5 \cdot 10^{-7} m}=6.7 \cdot 10^{14} Hz
3 0
3 years ago
A JFET has a drain current of 5mA. If IDSS = 10mA and VGS ( off )= -6 v. find The Value Of
levacccp [35]

\underline {\huge \boxed{ \sf \color{skyblue}Answer :  }}

<u>Given :</u>

\tt \large {\color{purple}     ↬ }  \:  \:  \:  \:  \:  I_{D} = 5mA

\:  \:

\tt \large {\color{purple}     ↬ }  \:  \:  \:  \:  \:  I_{DSS} = 10mA

\:  \:

\tt \large {\color{purple}     ↬ }  \:  \:  \:  \:  \:  V_{GS(off)} = -6V

\:  \:

\tt \large {\color{purple}     ↬ }  \:  \:  \:  \:  \:  V_{GS} =   {?}

\:  \:  \:

<u>Let's Slove :</u><u> </u>

  • \tt \large  I_{D} = I_{(DSS)}  (1 -   \frac {V_{GS}}{V_{GS(off)}} )^{2}

\:  \:  \:

  • \tt \large \: V_{GS} = (1 -  \frac{ \sqrt{I_D} }{ \sqrt{I_{DSS}} } ) \times  V_{GS(off)}

\:  \:  \:

  • \tt \large \: V_{GS} = (1 -  \frac{ \sqrt{5m} }{ \sqrt{10m} } ) \times  { - 6}

\:  \:

  • \underline \color{red} {\tt \large \boxed {\tt V_{GS} = 1.75 ✓}}
3 0
1 year ago
What is the weight of a 5.00 kg object on Earth? Assume g=9.81 m/s^2.
Softa [21]

<em>weight = (mass) x (gravity)</em>

Weight = (5.00 kg) x (9.81 m/s²)

weight = (5.00 x 9.81) (kg-m/s²)

<em>Weight = 49.05 Newton</em>

7 0
3 years ago
Other questions:
  • The electric field 2.5 mm from a uniform sheet of charge is σ=800, NC. How much charge is contained in a 5.0x5.0 cm section of t
    14·1 answer
  • Match the organisms to the descriptions.
    6·2 answers
  • Which three forms of light are invisible light?
    9·2 answers
  • A 1000-kg car is driving toward the north along a straight horizontal road at a speed of 20.0 m/s. The driver applies the brakes
    10·1 answer
  • An object, 5 cm high, is placed on the principal axis of a diverging lens of focal length 20 cm. The object is 30 cm from the le
    15·1 answer
  • How much does a person weigh if it takes 700 kg*m/s to move them 10 m/s<br><br> NEED ASAP
    14·1 answer
  • TRUE of FALSE: The human body responds to stressors by activating the nervous
    5·1 answer
  • Balancing equations<br>​
    11·1 answer
  • 1.14 Which of the following is an example of a force without touching? A A boy pushing a trolley. B The mass of a car. C с A mag
    13·1 answer
  • An object has a moving energy of 25 J. If I do 25 J of work on the object, how much energy does it have now?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!