Answer:

Explanation:
Let consider a car travelling at a speed
. The ratio of final kinetic energy to initial kinetic energy:


The final speed is:

Answer:
The magnitude of the uniform magnetic field exerting this torque on the loop is 1.67 T
Explanation:
Given;
radius of the wire, r = 0.45 m
current on the loop, I = 2.4 A
angle of inclination, θ = 36⁰
torque on the coil, τ = 1.5 N.m
The torque on the coil is given by;
τ = NIBAsinθ
where;
B is the magnetic field
Area of the loop is given by;
A = πr² = π(0.45)² = 0.636 m
τ = NIBAsinθ
1.5 = (1 x 2.4 x 0.636 x sin36)B
1.5 = 0.8972B
B = 1.5 / 0.8972
B = 1.67 T
Therefore, the magnitude of the uniform magnetic field exerting this torque on the loop is 1.67 T
Answer:
Group IA elements have only one valency electron while Group IIA have two valency electrons.
Group IA elements have cations with higher charge density hence polarizing anions easier resulting into covalent character while Group IIA elements have cations with lower charge density hence difficulty in distorting anions resulting into a ionic character. This is due to difference in cationic radii and charges
Answer:
1) d
2) 5 m/s
3) 100
Explanation:
The equation of position x for a constant acceleration a and an initial velocity v₀, initial position x₀, time t is:
(i) 
The equation for velocity v and a constant acceleration a is:
(ii) 
1) Solve equation (ii) for acceleration a and plug the result in equation (i)
(iii) 
(iv) 
Simplify equation (iv) and use the given values v = 0, x₀ = 0:
(v) 
2) Given v₀= 3m/s, a=0.2m/s², t=10 s. Using equation (ii) to get the final velocity v:
3) Given v₀=0m/s, t₁=10s, t₂=1s and x₀=0. Looking for factor f = x(t₁)/x(t₂) using equation(i) to calculate x(t₁) and x(t₂):

Answer:
freezing point and melting point