1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesna [10]
4 years ago
11

Explain why the negation of “Some students in my class use e-mail” is not “Some students in my class do not use e-mail”.

Mathematics
1 answer:
Olenka [21]4 years ago
6 0

Answer with Step-by-step explanation:

Since we have given that

Some students in my class use e-mail.

It is a type of 'E' statements.

Its negation should be No students in my class use e-mail.

Because if we use "Some students in my class do not use e-mail”.

It also implies some students in my class still use e-mail.

But negation contains only opposite of given statement.

So, Some students in my class do not use e-mail” is not true.

You might be interested in
A 24ft flagpole has a shadow of 9ft. A soldier standing next to the flagpole has a shadow of 2.25 feet. How tall is the soldier?
natima [27]

Answer:

6 feet

Step-by-step explanation:

Let's form a proportion;

24                    x

____    =      _____ ,

 9                   2.25

24(2.25) = 9x,

54 = 9x,

x = height of soldier = 6 feet

4 0
4 years ago
Read 2 more answers
Help!! Which of the following best represents Z1 • Z2 select all that apply
AURORKA [14]

z_1=\sqrt{3}\left(cos\:\frac{\pi }{4}+i\:sin\:\frac{\pi }{4}\right)

z_2=\sqrt{6}\left(cos\:\frac{3\pi \:}{4}+i\:sin\:\frac{3\pi \:}{4}\right)

\cos \left(\frac{\pi }{4}\right)=\frac{\sqrt{2}}{2}

\sin \left(\frac{\pi }{4}\right)=\frac{\sqrt{2}}{2}

\cos \left(\frac{3\pi }{4}\right)=-\frac{\sqrt{2}}{2}

\sin \left(\frac{3\pi }{4}\right)=\frac{\sqrt{2}}{2}\\

Z_1*Z_2=\sqrt{3}\left(cos\:\frac{\pi }{4}+i\:sin\:\frac{\pi }{4}\right)\cdot \sqrt{6}\left(cos\:\frac{3\pi \:}{4}+i\:sin\:\frac{3\pi \:}{4}\right)

=\sqrt{3}\left(\frac{\sqrt{2}}{2}+\:i\frac{\sqrt{2}}{2}\right)\cdot \sqrt{6}\left(\frac{-\sqrt{2}}{2}+\:i\frac{\sqrt{2}}{2}\right)

On simplifying, we get

Z_1* Z_2 =-3\sqrt{2}

<h2>Therefore, correct option is  1st option.</h2>
3 0
3 years ago
Factor completely x^3 + 1/8
maksim [4K]

Answer:

((2 x + 1) (4 x^2 - 2 x + 1))/8

Step-by-step explanation:

Factor the following:

x^3 + 1/8

Put each term in x^3 + 1/8 over the common denominator 8: x^3 + 1/8 = (8 x^3)/8 + 1/8:

(8 x^3)/8 + 1/8

(8 x^3)/8 + 1/8 = (8 x^3 + 1)/8:

(8 x^3 + 1)/8

8 x^3 + 1 = (2 x)^3 + 1^3:

((2 x)^3 + 1^3)/8

Factor the sum of two cubes. (2 x)^3 + 1^3 = (2 x + 1) ((2 x)^2 - 2 x + 1^2):

((2 x + 1) ((2 x)^2 - 2 x + 1^2))/8

1^2 = 1:

((2 x + 1) ((2 x)^2 - 2 x + 1))/8

Multiply each exponent in 2 x by 2:

((2 x + 1) (2^2 x^2 - 2 x + 1))/8

2^2 = 4:

Answer:  ((2 x + 1) (4 x^2 - 2 x + 1))/8

5 0
3 years ago
Read 2 more answers
Simplify:<br> (4p3 + 6p2 – 7) – (8p? – 7 – 3p)
Kipish [7]

Answer:

4p3 + 6p2 - 8p - 7

Step-by-step explanation:

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "p2"   was replaced by   "p^2".  1 more similar replacement(s).

STEP

1

:

Equation at the end of step 1

 (((4 • (p3)) +  (2•3p2)) -  7) -  8p

STEP

2

:

Equation at the end of step

2

:

 ((22p3 +  (2•3p2)) -  7) -  8p

STEP

3

:

Checking for a perfect cube

3.1    4p3+6p2-8p-7  is not a perfect cube

Trying to factor by pulling out :

3.2      Factoring:  4p3+6p2-8p-7

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -8p-7

Group 2:  4p3+6p2

Pull out from each group separately :

Group 1:   (8p+7) • (-1)

Group 2:   (2p+3) • (2p2)

3.3    Find roots (zeroes) of :       F(p) = 4p3+6p2-8p-7

Polynomial Roots Calculator is a set of methods aimed at finding values of  p  for which   F(p)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  p  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  4  and the Trailing Constant is  -7.

The factor(s) are:

of the Leading Coefficient :  1,2 ,4

of the Trailing Constant :  1 ,7

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        3.00    

     -1       2        -0.50        -2.00    

     -1       4        -0.25        -4.69    

     -7       1        -7.00       -1029.00    

     -7       2        -3.50        -77.00    

     -7       4        -1.75        3.94    

     1       1        1.00        -5.00    

     1       2        0.50        -9.00    

     1       4        0.25        -8.56    

     7       1        7.00        1603.00    

     7       2        3.50        210.00    

     7       4        1.75        18.81    

Final result :

 4p3 + 6p2 - 8p - 7

5 0
3 years ago
Plz help me with this math and also explain
jasenka [17]

Step-by-step explanation:

<h2>[1]</h2>

  • SI = $250
  • Rate (R) = 12\sf \dfrac{1}{2} %
  • Time (t) = 4 years

\longrightarrow \tt { SI = \dfrac{PRT}{100} } \\

\longrightarrow \tt { 250 = \dfrac{P \times 12\cfrac{1}{2} \times 4}{100} } \\

\longrightarrow \tt { 250 = \dfrac{P \times \cfrac{25}{2} \times 4}{100} } \\

\longrightarrow \tt { 250 = \dfrac{P \times 25 \times 2}{100} } \\

\longrightarrow \tt { 250 = \dfrac{P \times 50}{100} } \\

\longrightarrow \tt { 250 \times 100 = P \times 50} \\

\longrightarrow \tt { 25000 = P \times 50} \\

\longrightarrow \tt { \dfrac{25000}{50} = P } \\

\longrightarrow \underline{\boxed{ \green{ \tt { \$ \; 500 = P }}}} \\

Therefore principal is $500.

<h2>__________________</h2>

<h2>[2]</h2>

  • 2/7 of the balls are red.
  • 3/5 of the balls are blue.
  • Rest are yellow.
  • Number of yellow balls = 36

Let the total number of balls be x.

→ Red balls + Blue balls + Yellow balls = Total number of balls

\longrightarrow \tt{ \dfrac{2}{7}x + \dfrac{3}{5}x + 36 = x} \\

\longrightarrow \tt{ \dfrac{10x + 21x + 1260}{35} = x} \\

\longrightarrow \tt{ \dfrac{31x + 1260}{35} = x} \\

\longrightarrow \tt{ 31x + 1260= 35x} \\

\longrightarrow \tt{ 1260= 35x-31x} \\

\longrightarrow \tt{ 1260= 4x} \\

\longrightarrow \tt{ \dfrac{1260 }{4}= x} \\

\longrightarrow \underline{\boxed{  \tt { 315 = x }}} \\

Total number of balls is 315.

A/Q,

3/5 of the balls are blue.

\longrightarrow \tt{ Balls_{(Blue)} =\dfrac{3 }{5}x} \\

\longrightarrow \tt{ Balls_{(Blue)} =\dfrac{3 }{5}(315)} \\

\longrightarrow \tt{ Balls_{(Blue)} = 3(63)} \\

\longrightarrow \underline{\boxed{ \green {\tt { Balls_{(Blue)} = 189 }}}} \\

8 0
3 years ago
Other questions:
  • For each ordered pair (x,y) , determine whether it is a solution to the inequality
    11·1 answer
  • Can y'all solve them and show me the steps on how you did it
    8·1 answer
  • Plz help me I don’t get this
    12·1 answer
  • Volume with cubes with fraction lengths
    6·1 answer
  • Oceanside Bike Rental Shop charges a sixteen dollar fixed fee plus seven dollars an
    5·1 answer
  • Consider the function f(x) = 3x2 + 7x + 2.
    7·2 answers
  • Non example of a ratio tables
    15·1 answer
  • How do I know if lines are perpendicular
    8·2 answers
  • Karla makes paper airplanes. Today, it takes her 32 min to make 16 paper airplanes.
    15·1 answer
  • Cereal is on sale this week. Is it a better buy to get the 10-ounce box for $1.76 or the 14-ounce box for $2.42?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!