Answer:
<h2>7x - 4y + 18 = 0</h2>
Step-by-step explanation:
The slope-intercept form of an equation of a line:
![y=mx+b](https://tex.z-dn.net/?f=y%3Dmx%2Bb)
m - slope
b - y-intercept
========================================
Let
![k:y=m_1x+b_1\\\\l:y=m_2x+b_2\\\\l\ \perp\ k\iff m_1m_2=-1\to m_2=-\dfrac{1}{m_1}\\\\l\ \parallel\ k\iff m_1=m_2](https://tex.z-dn.net/?f=k%3Ay%3Dm_1x%2Bb_1%5C%5C%5C%5Cl%3Ay%3Dm_2x%2Bb_2%5C%5C%5C%5Cl%5C%20%5Cperp%5C%20k%5Ciff%20m_1m_2%3D-1%5Cto%20m_2%3D-%5Cdfrac%7B1%7D%7Bm_1%7D%5C%5C%5C%5Cl%5C%20%5Cparallel%5C%20k%5Ciff%20m_1%3Dm_2)
========================================
We have the equation of a line in a general form (Ax + By + C = 0)
Convert it to the slope-intercept form:
<em>subtract 7y from both sides</em>
<em>divide both sides by (-7)</em>
![-\dfrac{4}{7}x-\dfrac{3}{7}=y\to m_1=-\dfrac{4}{7}](https://tex.z-dn.net/?f=-%5Cdfrac%7B4%7D%7B7%7Dx-%5Cdfrac%7B3%7D%7B7%7D%3Dy%5Cto%20m_1%3D-%5Cdfrac%7B4%7D%7B7%7D)
Therefore
![m_2=-\dfrac{1}{-\frac{4}{7}}=\dfrac{7}{4}](https://tex.z-dn.net/?f=m_2%3D-%5Cdfrac%7B1%7D%7B-%5Cfrac%7B4%7D%7B7%7D%7D%3D%5Cdfrac%7B7%7D%7B4%7D)
We have the equation:
![y=\dfrac{7}{4}x+b](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7B7%7D%7B4%7Dx%2Bb)
Put the coordinates of the point (-2, 1) to the equation, and solve for <em>b</em> :
![1=\dfrac{7}{4}(-2)+b](https://tex.z-dn.net/?f=1%3D%5Cdfrac%7B7%7D%7B4%7D%28-2%29%2Bb)
<em>multiply both sides by 2</em>
<em>add 7 to both sides</em>
<em>divide both sides by 2</em>
[te]x\dfrac{9}{2}=b\to b=\dfrac{9}{2}[/tex]
Finally:
- <em>slope-intercept form</em>
Convert to the general form:
<em>multiply both sides by 4</em>
<em>subtract 4y from both sides</em>
![0=7x-4y+18](https://tex.z-dn.net/?f=0%3D7x-4y%2B18)