1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blagie [28]
1 year ago
10

Dentify on which quadratic function is positive.

Mathematics
2 answers:
Olin [163]1 year ago
4 0

Answer:

\textsf{$y = 2x^2 - 17x + 30$: \quad $\left(-\infty, \dfrac{5}{2}\right) \cup (6, \infty)$}

\textsf{$y = - x^2 - 6x - 8$: \quad $\left(-\infty, -4\right) \cup (-2, \infty)$}

Step-by-step explanation:

A function is positive when it is <u>above the x-axis</u>, and negative when it is <u>below the x-axis</u>.

---------------------------------------------------------------------------------

<u>Given quadratic equation</u>:

y = 2x^2 - 17x + 30

Factor the equation:

\implies y = 2x^2 - 17x + 30

\implies y = 2x^2 - 5x-12x + 30

\implies y=x(2x-5)-6(2x-5)

\implies y=(x-6)(2x-5)

The x-intercepts of the parabola are when y = 0.

To find the <u>x-intercepts</u>, set each factor equal to zero and solve for x:

\implies x-6=0 \implies x=6

\implies 2x-5=0 \implies x=\dfrac{5}{2}

Therefore, the x-intercepts are x = ⁵/₂ and x = 6.

The leading coefficient of the given function is positive, so the <u>parabola opens upwards</u>.  

The function is positive when it is <u>above the x-axis</u>.

Therefore, the function is positive for the values of x less than the smallest x-intercept and more than the largest x-intercept:

  • \textsf{Solution: \quad $x < \dfrac{5}{2}$ \;and \;$x > 6$}
  • \textsf{Interval notation: \quad $\left(-\infty, \dfrac{5}{2}\right) \cup (6, \infty)$}

---------------------------------------------------------------------------------

<u>Given quadratic equation</u>:

y = - x^2 - 6x - 8

Factor the equation:

\implies y = - x^2 - 6x - 8

\implies y = -(x^2 +6x +8)

\implies y = -(x^2 +4x +2x+8)

\implies y = -((x(x+4)+2(x+4))

\implies y = -(x+4)(x+2)

The x-intercepts of the parabola are when y = 0.

To find the <u>x-intercepts</u>, set each factor equal to zero and solve for x:

\implies x+4=0 \implies x=-4

\implies x+2=0 \implies x=-2

Therefore, the x-intercepts are x = -4 and x = -2.

The leading coefficient of the given function is negative, so the <u>parabola opens downwards</u>.  

The function is negative when it is <u>below the x-axis</u>.

Therefore, the function is negative for the values of x less than the smallest x-intercept and more than the largest x-intercept:

  • \textsf{Solution: \quad $x < -4$ \;and \;$x > -2$}
  • \textsf{Interval notation: \quad $\left(-\infty, -4\right) \cup (-2, \infty)$}

Hoochie [10]1 year ago
3 0

Step-by-step explanation:

Let us identify which quadratic function is positive. Yeah, let's start.

Y = { \red{ \sf{2 {x}^{2}  - 17x + 30}}}

By using factorisation method,

{ \red{ \sf{2 {x}^{2}  - 12x - 5x + 30}}}

Take common factors

{ \red{ \sf{2x(x - 6) - 5(x - 6)}}}

{ \red{ \sf{(2x - 5)}}} \:  \:  \:  \:  \:   \:  \: ||  \:  \:  \:  \:  \: { \red{ \sf{(x - 6)}}}

{ \red{ \sf{2x - 5 = 0}}} \:  \:  ||  \:  \: { \red{ \sf{x - 6 = 0}}}

{ \red{ \sf{2x = 5}}} \:  \:  \:  \:  \:  \:  \:    \:  \:  ||  \:  \:  \:  \: { \red{ \boxed{ \green{ \sf{x = 6}}}}}

{ \red{ \sf{{ \frac{ \cancel2}{ \cancel2}x}}}} = { \red{ \sf{ \frac{5}{2}}}}

{ \red{ \boxed{ \green{ \sf{x =  \frac{5}{2}}}}}}

____________________________________

Y = { \blue{ \sf {{ - x}^{2}  - 6x - 8}}}

By using factorisation method,

{ \blue{ \sf{ -  {x}^{2}  - 2x - 4x - 8}}}

Take common factors

{ \blue{ \sf{ - x(x + 2) - 4(x + 2)}}}

{ \blue{ \sf{( - x - 4)}}} \:  \:  \:  \:  \:  ||  \:  \:  \:  \:  \: { \blue{ \sf{(x + 2)}}}

{ \blue{ \sf{- x - 4 = 0}}} \:  \:  \: \: \: || \:  \:  \:  \: \: { \blue{ \sf{x + 2 = 0}}}

{ \blue{ \boxed{ \green{ \sf{x = -4}}}}} \: \: \: \: \: || \: \: \: \: \: { \blue{ \boxed{ \green{ \sf{x = -2}}}}}

Hence, the first quadratic function is positive and second quadratic function is negative.

You might be interested in
Write the difference in factored form. (24x4 - 15x2 + 6x) - (10x4 + 5x2 - 4x)​
Pachacha [2.7K]

Answer:

The factored difference is: 2x(7x^3 - 10x + 5)

Step-by-step explanation:

Difference in non factored form:

To find the difference in non-factored form, we subtract the common terms. So

24x^4 - 15x^2 + 6x - (10x^4 + 5x^2 - 4x) = 24x^4 - 10x^4 - 15x^2 - 5x^2 + 6x + 4x = 14x^4 - 20x^2 + 10x

Greatest common factor:

Of the exponents: Between x^4, x^2 and x, it is the one with the lowest exponent, so x.

Between 14, 20 and 10:

14 - 20 - 10|2

7 - 10 - 5

So 2

The gcf is 2x, which means that the factored expression is:

2x(\frac{14x^4}{2x} - \frac{20x^2}{2x} + \frac{10x}{2x}) = 2x(7x^3 - 10x + 5)

The factored difference is: 2x(7x^3 - 10x + 5)

8 0
3 years ago
I’ll give brainliest i’m in middle school<br> help
Taya2010 [7]
The answer would be Y=5x-5
3 0
3 years ago
What are values in a 7 digit number
Montano1993 [528]
Ones, tens, hundreds,thousands, ten thousands, hundred thousands, millions
7 0
3 years ago
Describe how to evaluate and then evaluate<br>the following power: 81 3/2​
Lapatulllka [165]

Answer:729

Step-by-step explanation:

81^3/2

(3^4)^3/2

3^6

729

5 0
3 years ago
A pen is being built that is 10 feet long and 20 feet wide. How much fencing material will be needed?
mr_godi [17]
Perimeter = 2(10+20) = 60feet

60ft fencing material is needed
7 0
3 years ago
Read 2 more answers
Other questions:
  • show work identify the initial amount a and the growth factor b in the following exponential function y=25,600 * 1.01^x
    6·1 answer
  • Solve x^2 - 6x + 63 = 0 in a + bi form
    8·1 answer
  • Which pair is equivalent? 5/4 &amp; 1 2/4 . 4 6/7 &amp; 7/34. 3 3/5 &amp; 18/5. 12/9 &amp; 2 3/9​
    13·1 answer
  • Pls help me. I will mark you as brainly if you help me get the correct answer.
    8·2 answers
  • 11/5 - 7/4 + 2/1 evaluate​
    10·1 answer
  • Use the distributive property to remove parentheses. <br> -8(x-3w-2)
    11·1 answer
  • Please help with this
    6·1 answer
  • PLSS HELPP MEE
    7·1 answer
  • Gerry purchases 12 hamburgers at a fast food restaurant for $2.25 each. For half the amount of money, he could purchase 5 buffal
    13·1 answer
  • What is the solution to this equation ?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!