1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blagie [28]
1 year ago
10

Dentify on which quadratic function is positive.

Mathematics
2 answers:
Olin [163]1 year ago
4 0

Answer:

\textsf{$y = 2x^2 - 17x + 30$: \quad $\left(-\infty, \dfrac{5}{2}\right) \cup (6, \infty)$}

\textsf{$y = - x^2 - 6x - 8$: \quad $\left(-\infty, -4\right) \cup (-2, \infty)$}

Step-by-step explanation:

A function is positive when it is <u>above the x-axis</u>, and negative when it is <u>below the x-axis</u>.

---------------------------------------------------------------------------------

<u>Given quadratic equation</u>:

y = 2x^2 - 17x + 30

Factor the equation:

\implies y = 2x^2 - 17x + 30

\implies y = 2x^2 - 5x-12x + 30

\implies y=x(2x-5)-6(2x-5)

\implies y=(x-6)(2x-5)

The x-intercepts of the parabola are when y = 0.

To find the <u>x-intercepts</u>, set each factor equal to zero and solve for x:

\implies x-6=0 \implies x=6

\implies 2x-5=0 \implies x=\dfrac{5}{2}

Therefore, the x-intercepts are x = ⁵/₂ and x = 6.

The leading coefficient of the given function is positive, so the <u>parabola opens upwards</u>.  

The function is positive when it is <u>above the x-axis</u>.

Therefore, the function is positive for the values of x less than the smallest x-intercept and more than the largest x-intercept:

  • \textsf{Solution: \quad $x < \dfrac{5}{2}$ \;and \;$x > 6$}
  • \textsf{Interval notation: \quad $\left(-\infty, \dfrac{5}{2}\right) \cup (6, \infty)$}

---------------------------------------------------------------------------------

<u>Given quadratic equation</u>:

y = - x^2 - 6x - 8

Factor the equation:

\implies y = - x^2 - 6x - 8

\implies y = -(x^2 +6x +8)

\implies y = -(x^2 +4x +2x+8)

\implies y = -((x(x+4)+2(x+4))

\implies y = -(x+4)(x+2)

The x-intercepts of the parabola are when y = 0.

To find the <u>x-intercepts</u>, set each factor equal to zero and solve for x:

\implies x+4=0 \implies x=-4

\implies x+2=0 \implies x=-2

Therefore, the x-intercepts are x = -4 and x = -2.

The leading coefficient of the given function is negative, so the <u>parabola opens downwards</u>.  

The function is negative when it is <u>below the x-axis</u>.

Therefore, the function is negative for the values of x less than the smallest x-intercept and more than the largest x-intercept:

  • \textsf{Solution: \quad $x < -4$ \;and \;$x > -2$}
  • \textsf{Interval notation: \quad $\left(-\infty, -4\right) \cup (-2, \infty)$}

Hoochie [10]1 year ago
3 0

Step-by-step explanation:

Let us identify which quadratic function is positive. Yeah, let's start.

Y = { \red{ \sf{2 {x}^{2}  - 17x + 30}}}

By using factorisation method,

{ \red{ \sf{2 {x}^{2}  - 12x - 5x + 30}}}

Take common factors

{ \red{ \sf{2x(x - 6) - 5(x - 6)}}}

{ \red{ \sf{(2x - 5)}}} \:  \:  \:  \:  \:   \:  \: ||  \:  \:  \:  \:  \: { \red{ \sf{(x - 6)}}}

{ \red{ \sf{2x - 5 = 0}}} \:  \:  ||  \:  \: { \red{ \sf{x - 6 = 0}}}

{ \red{ \sf{2x = 5}}} \:  \:  \:  \:  \:  \:  \:    \:  \:  ||  \:  \:  \:  \: { \red{ \boxed{ \green{ \sf{x = 6}}}}}

{ \red{ \sf{{ \frac{ \cancel2}{ \cancel2}x}}}} = { \red{ \sf{ \frac{5}{2}}}}

{ \red{ \boxed{ \green{ \sf{x =  \frac{5}{2}}}}}}

____________________________________

Y = { \blue{ \sf {{ - x}^{2}  - 6x - 8}}}

By using factorisation method,

{ \blue{ \sf{ -  {x}^{2}  - 2x - 4x - 8}}}

Take common factors

{ \blue{ \sf{ - x(x + 2) - 4(x + 2)}}}

{ \blue{ \sf{( - x - 4)}}} \:  \:  \:  \:  \:  ||  \:  \:  \:  \:  \: { \blue{ \sf{(x + 2)}}}

{ \blue{ \sf{- x - 4 = 0}}} \:  \:  \: \: \: || \:  \:  \:  \: \: { \blue{ \sf{x + 2 = 0}}}

{ \blue{ \boxed{ \green{ \sf{x = -4}}}}} \: \: \: \: \: || \: \: \: \: \: { \blue{ \boxed{ \green{ \sf{x = -2}}}}}

Hence, the first quadratic function is positive and second quadratic function is negative.

You might be interested in
Consider the inequality, 1/2x +1 &lt;4. If I
vaieri [72.5K]

Step-by-step explanation:

To answer your question, no. Only when you are multiplying/dividing both sides by a negative number.

0.5x + 1 < 4

0.5x < 3

x < 6.

3 0
4 years ago
Which represents the pythagorean theorem formula correctly​
Fantom [35]

Answer: The first one. a^2 +b^2 = c^2

Step-by-step explanation:

8 0
3 years ago
What is 1481 rounded to the nearest hundred
laila [671]

Answer:

1500

Step-by-step explanation:

1481 to the nearest hundred is 1500 because 8 is nearer to 10

4 0
3 years ago
Read 2 more answers
Create an equivalent fraction to 6/14. Explain your reasoning
UNO [17]

Answer:

3/7

Step-by-step explanation:

3/7 is 6/14 simplified

7 0
3 years ago
What is the distance from (-1,-14) and (-2,-6)?
SIZIF [17.4K]

Answer:

d = \sqrt{65}

Step-by-step explanation:

The distance between two points is found by

d = \sqrt{( x2-x1)^2 + ( y2-y1)^2} where (x1,y1) and (x2,y2) are the two points

d = \sqrt{(-2 - -1)^2+(-6 - -14)^2 }

d =\sqrt{( -2+1)^2 + (-6+14)^2}\\

d = \sqrt{(-1)^2 +( 8)^2 }

d = \sqrt{1+64}

d = \sqrt{65}

6 0
1 year ago
Other questions:
  • 25 to 50 points Round to the nearest tenth of a percent if you need to
    8·1 answer
  • Expand the binomial (2x+y^2)^5
    11·1 answer
  • Reduce the fraction 36/48 to its lowest term
    11·1 answer
  • How do you find the sides of a trangle when you already have your hypotenuses
    10·1 answer
  • Which is another name for plane M?
    6·1 answer
  • A carpenter is making a backyard deck. In the measurements, he has determined that he needs to make a support triangle with an a
    5·1 answer
  • Solve the equation -3p+10=1 for p
    10·1 answer
  • Solve <br> (2x^3 + x^2+ x) ÷X
    7·2 answers
  • A rectangular prism has the volume of 528 cubic
    6·1 answer
  • Algebra 2 (A P E X) please respond asap
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!