1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blagie [28]
1 year ago
10

Dentify on which quadratic function is positive.

Mathematics
2 answers:
Olin [163]1 year ago
4 0

Answer:

\textsf{$y = 2x^2 - 17x + 30$: \quad $\left(-\infty, \dfrac{5}{2}\right) \cup (6, \infty)$}

\textsf{$y = - x^2 - 6x - 8$: \quad $\left(-\infty, -4\right) \cup (-2, \infty)$}

Step-by-step explanation:

A function is positive when it is <u>above the x-axis</u>, and negative when it is <u>below the x-axis</u>.

---------------------------------------------------------------------------------

<u>Given quadratic equation</u>:

y = 2x^2 - 17x + 30

Factor the equation:

\implies y = 2x^2 - 17x + 30

\implies y = 2x^2 - 5x-12x + 30

\implies y=x(2x-5)-6(2x-5)

\implies y=(x-6)(2x-5)

The x-intercepts of the parabola are when y = 0.

To find the <u>x-intercepts</u>, set each factor equal to zero and solve for x:

\implies x-6=0 \implies x=6

\implies 2x-5=0 \implies x=\dfrac{5}{2}

Therefore, the x-intercepts are x = ⁵/₂ and x = 6.

The leading coefficient of the given function is positive, so the <u>parabola opens upwards</u>.  

The function is positive when it is <u>above the x-axis</u>.

Therefore, the function is positive for the values of x less than the smallest x-intercept and more than the largest x-intercept:

  • \textsf{Solution: \quad $x < \dfrac{5}{2}$ \;and \;$x > 6$}
  • \textsf{Interval notation: \quad $\left(-\infty, \dfrac{5}{2}\right) \cup (6, \infty)$}

---------------------------------------------------------------------------------

<u>Given quadratic equation</u>:

y = - x^2 - 6x - 8

Factor the equation:

\implies y = - x^2 - 6x - 8

\implies y = -(x^2 +6x +8)

\implies y = -(x^2 +4x +2x+8)

\implies y = -((x(x+4)+2(x+4))

\implies y = -(x+4)(x+2)

The x-intercepts of the parabola are when y = 0.

To find the <u>x-intercepts</u>, set each factor equal to zero and solve for x:

\implies x+4=0 \implies x=-4

\implies x+2=0 \implies x=-2

Therefore, the x-intercepts are x = -4 and x = -2.

The leading coefficient of the given function is negative, so the <u>parabola opens downwards</u>.  

The function is negative when it is <u>below the x-axis</u>.

Therefore, the function is negative for the values of x less than the smallest x-intercept and more than the largest x-intercept:

  • \textsf{Solution: \quad $x < -4$ \;and \;$x > -2$}
  • \textsf{Interval notation: \quad $\left(-\infty, -4\right) \cup (-2, \infty)$}

Hoochie [10]1 year ago
3 0

Step-by-step explanation:

Let us identify which quadratic function is positive. Yeah, let's start.

Y = { \red{ \sf{2 {x}^{2}  - 17x + 30}}}

By using factorisation method,

{ \red{ \sf{2 {x}^{2}  - 12x - 5x + 30}}}

Take common factors

{ \red{ \sf{2x(x - 6) - 5(x - 6)}}}

{ \red{ \sf{(2x - 5)}}} \:  \:  \:  \:  \:   \:  \: ||  \:  \:  \:  \:  \: { \red{ \sf{(x - 6)}}}

{ \red{ \sf{2x - 5 = 0}}} \:  \:  ||  \:  \: { \red{ \sf{x - 6 = 0}}}

{ \red{ \sf{2x = 5}}} \:  \:  \:  \:  \:  \:  \:    \:  \:  ||  \:  \:  \:  \: { \red{ \boxed{ \green{ \sf{x = 6}}}}}

{ \red{ \sf{{ \frac{ \cancel2}{ \cancel2}x}}}} = { \red{ \sf{ \frac{5}{2}}}}

{ \red{ \boxed{ \green{ \sf{x =  \frac{5}{2}}}}}}

____________________________________

Y = { \blue{ \sf {{ - x}^{2}  - 6x - 8}}}

By using factorisation method,

{ \blue{ \sf{ -  {x}^{2}  - 2x - 4x - 8}}}

Take common factors

{ \blue{ \sf{ - x(x + 2) - 4(x + 2)}}}

{ \blue{ \sf{( - x - 4)}}} \:  \:  \:  \:  \:  ||  \:  \:  \:  \:  \: { \blue{ \sf{(x + 2)}}}

{ \blue{ \sf{- x - 4 = 0}}} \:  \:  \: \: \: || \:  \:  \:  \: \: { \blue{ \sf{x + 2 = 0}}}

{ \blue{ \boxed{ \green{ \sf{x = -4}}}}} \: \: \: \: \: || \: \: \: \: \: { \blue{ \boxed{ \green{ \sf{x = -2}}}}}

Hence, the first quadratic function is positive and second quadratic function is negative.

You might be interested in
Dee saves $20 a week for 10 weeks. during her 5-day vacation, she plans to spend $6.75 each day for snacks. which expression sho
QveST [7]

$20 a week for 10 weeks is:

20*10 = $200


She spends $6.75 each day for 5 days:

6.75*5 = $33.75.


Lets subtract her spending from her savings to find out how much she has left:

$200-$33.75 = $166.25

4 0
3 years ago
Read 2 more answers
Find b for the following right angled triange where a=5 and c=13
lilavasa [31]
You would use the Pythagorean there on which is a^2+b^2=c^2, from there you plug int what they gave you and solve for b, and b=12
4 0
3 years ago
Choose whether it's always, sometimes, never 
Keith_Richards [23]

Answer: An integer added to an integer is an integer, this statement is always true. A polynomial subtracted from a polynomial is a polynomial, this statement is always true. A polynomial divided by a polynomial is a polynomial, this statement is sometimes true. A polynomial multiplied by a polynomial is a polynomial, this statement is always true.

Explanation:

1)

The closure property of integer states that the addition, subtraction and multiplication is integers is always an integer.

If a\in Z\text{ and }b\in Z, then a+b\in Z.

Therefore, an integer added to an integer is an integer, this statement is always true.

2)

A polynomial is in the form of,

p(x)=a_nx^n+a_{n-1}x^{x-1}+...+a_1x+a_0

Where a_n,a_{n-1},...,a_1,a_0 are constant coefficient.

When we subtract the two polynomial then the resultant is also a polynomial form.

Therefore, a polynomial subtracted from a polynomial is a polynomial, this statement is always true.

3)

If a polynomial divided by a polynomial  then it may or may not be a polynomial.

If the degree of numerator polynomial is higher than the degree of denominator polynomial then it may be a polynomial.

For example:

f(x)=x^2-2x+5x-10 \text{ and } g(x)=x-2

Then \frac{f(x)}{g(x)}=x^2+5, which a polynomial.

If the degree of numerator polynomial is less than the degree of denominator polynomial then it is a rational function.

For example:

f(x)=x^2-2x+5x-10 \text{ and } g(x)=x-2

Then \frac{g(x)}{f(x)}=\frac{1}{x^2+5}, which a not a polynomial.

Therefore, a polynomial divided by a polynomial is a polynomial, this statement is sometimes true.

4)

As we know a polynomial is in the form of,

p(x)=a_nx^n+a_{n-1}x^{x-1}+...+a_1x+a_0

Where a_n,a_{n-1},...,a_1,a_0 are constant coefficient.

When we multiply the two polynomial, the degree of the resultand function is addition of degree of both polyminals and the resultant is also a polynomial form.

Therefore, a polynomial subtracted from a polynomial is a polynomial, this statement is always true.

3 0
3 years ago
Read 2 more answers
Which expression is NOT equal to 28?
Temka [501]

Answer:

aaaaa

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
When taking skinfold measurement readings only one attempt per site is necessary for an accurate reading.a. Trueb. False
Eva8 [605]

Answer: False

Step-by-step explanation: Skinfold measurements is one of the oldest ways of measuring a person's fat percentage,it's usually taken in specific areas of the body where there are Skinfolds,while taking this measurements it is expected that the person taking it does the average of 2or more repeated measurements in order to ensure that the actual thickness of that area of the body is correctly entered.

It is specifically taken from the right side of the body,where the person pinches out the Skinfolds away from the body by attaching a caliper ,this is to ensure that only the fatty laters are considered, it is mainly presented in percentage.

3 0
3 years ago
Other questions:
  • Help me on number problem 4 and 5 please
    9·1 answer
  • cliff collects marbles. 1/2 of his collection is blue. of the blue marbles 1/2 of these are a dark blue. how much of cliff's mar
    14·1 answer
  • VERTICAL STRETCHES AND SHRINKS OF THE SQUARE ROOT FUNCTION
    14·1 answer
  • Write the ratio as a fraction in simplest form: 4ft : 2.4ft
    12·1 answer
  • The measure of an exterior angle at the vertex of a polygon equals the measure of the adjacent interior angle.
    11·2 answers
  • 4.
    9·1 answer
  • Evaluate each value expression for the given value of the variable : 33-7w +6 when w=4
    15·1 answer
  • 10. Which of these is NOT a perfect square?<br> a. 81<br> b. 100<br> C. X2<br> d. 42
    14·1 answer
  • How to do these answers get marked as brainliest!
    5·1 answer
  • A rectangle with a width of 6 inches and a length of 8 inches has length extended by X inches write an expression for the new le
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!